© 'doubtnut

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 40

Mathematics

1. In a triangle $A B C, \sum_{r=0}^{n}{ }^{n} C_{r} a^{r}$ is
$b^{n-4} \cos (r B-(n-r) A)$
equal to (where a, b, c represents the sides and A, B, C
represents the angles of $\triangle A B C$)
A. a^{n}
B. b^{n}
C. c^{n}
D. None of these

Answer: C

D View Text Solution

2. Let $|z+i|=-z+i=0$, then argumentof z can't be
A. $\frac{\pi}{2}$
B. $-\frac{\pi}{4}$
C. $-\frac{\pi}{6}$
D. $-\frac{3 \pi}{4}$

Answer: D

- View Text Solution

3. If $A B=0$, then for the matrices
$A=\left[\left(\cos ^{2} \theta, \cos \theta \sin \theta\right)<\left(\cos \theta \sin \theta, \sin ^{2} \theta\right)\right]$
and
$B=\left[\begin{array}{cc}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right], \theta-\phi$ is
A. an odd number of $\frac{\pi}{2}$
B. an odd multiple of π
C. an even multiple of $\frac{\pi}{2}$
D. 0

- View Text Solution

4. If a matrix $A=\left[\begin{array}{ccc}2 & 4 & 5 \\ 4 & 8 & 10 \\ -6 & -12 & -15\end{array}\right]$ then the rank of A is equal to
A. 0
B. 1
C. 2
D. 3

Answer: B

- View Text Solution

5. There are two bags, bag 1 contains 3 white and 2 redballs and bag 2 contains 4 white and 5 red balls. A ball is drawn randomly from bag 1 and put and in bag 2.Now 2 balls are drawn from bag 2 and found to be red. Then the probability that white ball was drawn from bag 1 to bag 2 is
A. $<\frac{1}{2}$
B. $<\frac{1}{4}$
C. $>\frac{3}{4}$
D. $>\frac{1}{4}$

Answer: D

6. If all the equations
$x^{2}+(2 a+3 b) x+60=0, x^{2}+a x+10=0$
and $x^{2}+b x+8=0$ where $a, b \in R$ have a common root, then the value of $|a-b|$ is
A. 0
B. 1
C. 2
D. None of these

Answer: B

D View Text Solution
7. If R is a relation on the set N, defined by $\{(x, y): 2 x-y=10\}$ then R is
A. reflexive
B. symmetric
C. transitive
D. None of these

Answer: D

D View Text Solution

8. The locus of the centre of a variable circle touching two circles of radius r_{1} and r_{2} externaly which also touch each
other externally is a conic. The eccentricity of the conic if

$$
\frac{r_{1}}{r_{2}}=3+2 \sqrt{2} \text { is }
$$

A. 1
B. $\sqrt{2}$
C. $\frac{1}{2}$
D. $2 \sqrt{2}$

Answer: B

- View Text Solution

9. If the line joining the foci of the hyperbola $S_{1}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+1=0$ does not subtend a right angle at any point on the hyperbola $S_{2} \equiv \frac{x^{2}}{4 a^{2}}-\frac{y^{2}}{b^{2}}=1$ then
number of integral values of $4 e^{2}$ is /are (e is eccentricity of $S_{2}=0$)
A. 1
B. 2
C. 3
D. 4

Answer: B

- View Text Solution

10. The equation of circle touching the parabola $y=1-x^{2}$ at the point $(2,-3)$ and having its centre on the line $y+x=0$ is
A. $(x-3)^{2}+(y+3)^{2}=1$
B. $\left(x-\frac{14}{5}\right)^{2}+\left(y+\frac{14}{5}\right)^{2}=\frac{17}{25}$
C. $\left(x+\frac{14}{25}\right)^{2}+\left(y-\frac{14}{25}\right)^{2}=\frac{17}{25}$
D. $(x-4)^{2}+(y+4)^{2}=5$

Answer: B

D View Text Solution

11. In $\triangle A B C$ if medians from B and C are mutually perpendicular then the possible value of $\cot B+\cot C$ is
A. $\frac{1}{3}$
B. $\frac{2}{5}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer: D

- View Text Solution

12. Let P be the point $(1,2,3)$ and Q be a point on the line

$$
\vec{r}=(\hat{i}-\hat{j}+5 \hat{k})+\lambda(-2 \hat{i}+3 \hat{j}+4 \hat{k}) .
$$

Then the value of λ for which line PQ is perpendicular to the plane $4 x+9 y-18 z=1$ is
A. $\frac{1}{3}$
B. $-\frac{1}{6}$
C. $-\frac{2}{3}$
D. $\frac{2}{5}$

Answer: D

- View Text Solution

13. The equation of line through ($1,2,-1$) and perpendicular to the lines

$$
\begin{aligned}
& \vec{r}=(\hat{i}+\hat{j})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \\
& \vec{r}=(-\hat{i}+2 \hat{j})+\mu(\hat{j}-3 \hat{k}) \text { is }
\end{aligned}
$$

A. $\vec{r}=(\hat{i}+2 \hat{j}-k)+\lambda)(2 \hat{i}+3 \hat{j}+\hat{k})$
B. $\vec{r}=(\hat{i}+2 \hat{j}-k)+\lambda(\hat{i}-\hat{j}+\hat{k})$
C. $\vec{r}=(\hat{i}+2 \hat{j}-k)+\lambda(\hat{j}-3 \hat{k})$
D. None of these

Answer: A

D View Text Solution

14. If $\lim _{x \rightarrow 0}\left(\frac{a \sin x+b \tan x}{x^{3}}\right)=\frac{3}{2}$ then $|a+2 b|$ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: D
15. If $f(x)=|x-2|$ and $g(x)=f(f(x))$ then for $x>10, g^{\prime}(x)$ equal
A. -1
B. 0
C. 1
D. $2 x-4$

Answer: C

- View Text Solution

16. $\int_{0}^{1}\left[\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\right.$
$\left.+\left[\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\left[\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)\right]\right]\right] d x$ equal to
(where [.] is G.I.F)
A. 1
B. 2
C. 0
D. $3\left(1-\tan \frac{1}{2}\right)$

Answer: D

- View Text Solution

17. If the substitution $x=\tan ^{-1}(t)$ transforms the differential equation $\frac{d^{2} y}{d x^{2}}+x y(d y) ?(d x)+\sec ^{2} x=0$ into a differential equation
$\left(1+t^{2}\right) \frac{d^{2} y}{d t^{2}}+\left(2 t+y \tan ^{-1}(t)\right) \frac{d y}{d t}=k$, then k is equal to
A. -2
B. 2
C. 1
D. 0

Answer: C

- View Text Solution

18. If $\int \sqrt{1+\sec x} d x=2(f o g)(x)+C$ then
A. $f(x)=\sec x-1$
B. $f(x)=2 \tan ^{-1} x$
C. $g(x)=\sqrt{\sec x-1}$
D. None

Answer: C

D View Text Solution

19. Number of ways of seat 8 men and 8 women around a round table where one particular man and one particular woman always sit together, and men and women alternate is equal to
A. $2 \times(7!)^{2}$
B. $2(6!)^{2}$
C. $16!-2!\times 14!$
D. None of these

Answer: A

D View Text Solution

20. The value of x in $\left(0, \frac{\pi}{2}\right)$ satisfying equation

$$
\frac{\sqrt{5}-1}{\sin x}+\frac{\sqrt{10+2 \sqrt{5}}}{\cos x}=8 \text { is }
$$

A. $\frac{\pi}{8}$
B. $\frac{\pi}{9}$
C. $\frac{\pi}{10}$
D. None of these

Answer: C

D View Text Solution

21. If x_{1} and $x_{2}\left(x_{1}<x_{2}\right)$ are two valus of x satisfying the equation
$\left|2\left(x^{2}+\frac{1}{x^{2}}\right)+\left|\left|1-x^{2}\right|, \quad\right.\right.$ then the value of
$=4\left(\frac{3}{2}-2^{x^{2}-3}-\frac{1}{2^{x^{2}+1}}\right)$
$\int_{x_{1}+x_{2}}^{3 x_{2}-x_{1}}\left\{\frac{x}{4}\right\}\left(1+\left[\tan \left(\frac{\{x\}}{1+\{x\}}\right)\right]\right) d x$ (where [.] and
[.] denote greatest integer function and fractional part function respectively)
22. Let $f(x)= \begin{cases}2-x+a^{2}-9 a-9 & x<2 \\ 2 x-3 & x \geq 2\end{cases}$
where a is a positive constant. If $f(x)$ has local minimum at
$x=2$, then the least integral value of a is

- View Text Solution

23. Suppose $y=f(x)$ be a real valued differentiable function on Rsuch that $f(1)=1$. If $f(x)$ satisfies $x f^{\prime}(x)=x^{2}+f(x)-2$ then what will be the ara bounded by $\mathrm{f}(\mathrm{x})$ with x -axis between ordinates $\mathrm{x}=0$ and $\mathrm{x}=3$.
24. Let $f(x)$ be a function defined for $x \in R$ such that $f^{3}(x)-6 f^{2}(x)+11 f(x)-6=0 \forall x$. If $\in R$ is given that $f(x)$ is discontinuous at $x=0$ only then number of such possible functions $f(x)$ is

- View Text Solution

25. If $|x|<1$, then find the value of
$\frac{1-2 x}{1-x+x^{2}}+\frac{2 x-4 x^{3}}{1-x^{2}+x^{4}}+\frac{4 x^{3}-8 x^{7}}{1-x^{4}+x^{8}}+\ldots \ldots \ldots \ldots \infty$
when $x=\frac{1}{2}$
26. If $\sin A+\cos A=m$ and $\sin ^{3} A+\cos ^{3} A=n$ then the value of $m^{3}-3 m+2 n$ is

- View Text Solution

27. The mean of the data set comprising of 15 observations
is 15 . If one of the observation valued 2 is deleted and three new observations valued 4,5 and 6 are added to the data, then find the mean of the resultant data.

- View Text Solution

28. $B=(2,0), C=(8,0)$ are the vertices of a triangle ABC such that $4 \tan \frac{B}{2} \tan \frac{C}{2}=1$. If the locusof point A is
an ellipse, then the difference between the semi major axis and the semi minor axis is

D View Text Solution

29. An observer on the top of a tree, finds the angle of depression of a car moving towards the tree to be 30°. After 3 minutes this angle becomes 60°. After how much more time, the car will reach the tree (in min.)

- View Text Solution

30. In n be the number of distinct solutions of the equation $\cos ^{-1}|x|+\cos ^{-1}|2 x|=\pi$, then the value of $\frac{1}{n}$ is equal to

View Text Solution

