

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 41

Mathematics

1. The sun of the coefficient of all the terms in the expansion of $(2x-y+z)^{20}$ in which y do not appear at all while x appears in even powers and z appears in odd powers is

B.
$$\frac{2^{20}-1}{2}$$

 $\mathsf{C.}\,2^{19}$

D.
$$\frac{3^{20}-1}{2}$$

Answer: A

2. Let $\alpha_r=e^{\frac{2\pi r}{n}}(1\leq r\leq n)$ be the complex number associated with the point A_r on Argand oalne, and point B is (2,0) then the value of $BA_1.\ BA_2.\ BA_3.\ \ldots. BA_n$ is equal to

A. n

B. $2^{n} - 1$

 $\mathsf{C}.\,2n$

D. 2n - 1

Answer: B

View Text Solution

3. Let matrix $A=\begin{bmatrix}x&y&2\\1&2&3\\1&1&2\end{bmatrix}$ where $x,y\in N$. If $|adj(adj(adj(adjA)))|=3^{32}.5^{16},\;\;$ then number of such matrix A is equal to

A. 46

B. 47

C. 48

D. None of these

Answer: A

4. If M is the number of words that can be formed using letters of word EXCELLECE and N is the number of such words in which no two vowels are together then $\frac{M}{N}$ is equal to

B. 6

C. 4

D. None of these

Answer: B

View Text Solution

5. If the roots of $a(b-c)x^2+b(c-a)x+c(a-b)=0$ are equal then a,b,c are in:

A. A.P

B. G.P

C. H.P

D. None of these

Answer: C

is

A. 1

B. 4

C. 5

D. 6

Answer: B

View Text Solution

7. Let E=(1,2,3,4) and F=(1,2). Then the number of onto functions from E and F is

A. 14

B. 16

C. 12

D. 8

Answer: A

View Text Solution

8. If real numbers x and y satisfy $x^2+y^2-16x+30y+280=0$ then maximum value of $\left(x^2+y^2\right)^{\frac{1}{2}}$ is

A. 15

B. 20

C. 25

D. 30

Answer: B

View Text Solution

9. What is the eccentricity of the conic expressed by

$$x^2 + 2y^2 - 2x + 3y + 2 = 0$$

A. 0

$$\mathsf{B.}\;\frac{1}{2}$$

$$\mathsf{C.} \; \frac{1}{\sqrt{2}}$$

D. $\sqrt{2}$

Answer: C

View Text Solution

10. The minimum value of the expression $\left(t^2+1-lpha
ight)^2+\left(2t-lpha-4
ight)^2$ is $(t,lpha\in R)$

A. 2

B. 3

C. 8

D. 10

Answer: C

View Text Solution

11. For an isosceles triangle, the ends of the base are given by the points (2a,0) and (0,a). If the equation of one side is x=2a then the equation of the othe side is

A. x + 2y - a = 0

$$B. x + 2y = 2a$$

C.
$$3x + 4y - 4a = 0$$

D.
$$3x - 4y + 4a = 0$$

Answer: D

12. If the line
$$\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-1}{-1}$$
 intersects the plane $2x+3y-z+13=0$ at a point P and the plane $3x+y+4z=16$ at a point Q , then PQ is equal to

A.
$$2\sqrt{14}$$

B.
$$\sqrt{14}$$

$$c. 2\sqrt{7}$$

Answer: A

View Text Solution

13. If the volume of parallelepiped formed by the vectors $\hat{i}+\lambda\hat{j}+\hat{k},\,\hat{j}+\lambda\hat{k}$ and $\lambda\hat{i}+\hat{k}$ is minimum then λ is equal to

A.
$$\sqrt{3}$$

$$\mathrm{B.}-\frac{1}{\sqrt{3}}$$

C.
$$\frac{1}{\sqrt{3}}$$

D.
$$-\sqrt{3}$$

Answer: C

14. If f(x) is a differentials function such that
$$f'(1)=4 \quad \text{and} \quad f'(4)=\frac{1}{2}, \quad \text{the value of}$$

$$\lim_{x\to 0}\frac{f(x^2+x+1)-f(1)}{f(x^4-x^2+2x+4)-f(4)} \text{ is}$$

- A. 8
- B. 16
- C. 4
- D. Does not exist

Answer: C

View Text Solution

15. The probability that the screws are defective in three boxes of screws A,B and C are $\frac{1}{5}$, $\frac{1}{6}$ and $\frac{1}{7}$ respectively. A box is selected at random and a screw drawn from it randomly is found to be

defective. The probability that the defective screw

is drawn from the box A is

$$\mathsf{A.}\ \frac{16}{29}$$

$$\mathsf{B.}\;\frac{1}{15}$$

$$\mathsf{C.}\ 27\cdot 59$$

$$\mathsf{D.}\,\frac{42}{107}$$

Answer: D

16. The general solution of differential equation

$$rac{dy}{dx}+rac{y\ln y}{x}=rac{y{(\ln y)}^2}{x^2}$$
 is (where C is an arbitrary constant)

A.
$$\ln y = rac{1}{2x} + Cx$$

$$\mathsf{B.}\,\frac{1}{\ln y} = \frac{1}{2x} + C$$

C.
$$rac{1}{\ln u}=rac{1}{2x}+Cx$$

D.
$$\ln y = rac{1}{x} + Cx$$

Answer: C

17. $\int e^{\left(\log x + ax^2\right)} \cos\left(bx^2 + c\right) dx$ is equal to

A.
$$\dfrac{1}{\sqrt{a^2b^2}}e^{ax^2}\cos\left(bx^2+c+\dfrac{ an^{-1}b}{a}
ight)+A$$

В.

$$rac{1}{2\sqrt{a^2+b^2}}e^{x^2}\cosigg(bx-c- an^{-1}rac{b}{a}igg)+A$$

C.
$$rac{1}{\sqrt{a^2+b^2}}e^{ax^2}\cosigg(bx+c- an^{-1}rac{b}{a}igg)+A$$

D.

$$rac{1}{2\sqrt{a^2+b^2}}e^{ax^2}\cosigg(bx+c- an^{-1}rac{b}{a}igg)+A$$

Answer: D

18. The negation of the compound statement

$$extstyle au p ee (p ee (extstyle aq))$$
 is

A.
$$(extstyle p \cap q) \wedge p$$

B.
$$(extstyle p \wedge q) ee p$$

C.
$$(extstyle p \wedge q) ee extstyle p$$

D.
$$(extstyle p \wedge extstyle q) \wedge extstyle q$$

Answer: A

19. The mean and variation of 7 observations are 8 and 16 respectivelh. If 5 of the observations are 2,4,10,12,14 then the remaining two observations are

- A. 6,8
- B. 5,6
- C. 9,10
- D. None of these

Answer: A

20. Which one of the following is incorrect?

A.
$$\sin^{-1}(\sin 20) = 20 - 6\pi$$

B.
$$\cos^{-1}(\cos 12) = 4\pi - 12$$

C.
$$\cos^{-1}(\cos 22) = 8\pi - 22$$

D.
$$\cot^{-1}\cot(-13) = 4\pi - 13$$

Answer: D

21. In a triangle ABC if

$$\Delta=egin{array}{c|ccc} e^{i2A} & e^{-iC} & e^{iB} \ e^{-iC} & e^{i2B} & e^{-iA} \ e^{-iB} & e^{-iA} & e^{-i2C} \ \end{array} } ext{then } |\Delta|= ext{ (where |.|}$$

denote absolute value)

View Text Solution

22. Let f(x)

$$= \left\{ egin{array}{lll} 2-x+a^2-9a-9 & x < 2 \ 2x-3 & x > 2 \end{array}
ight.$$

Where a is a positive constnat. If f(x) has local minimum at x=2, then the least integral value of a is

23. If
$$y=\cos^{-1}\left|\frac{\cos x+4\sin x}{\sqrt{17}}\right|$$
 then $\frac{dy}{dx}$ d is

24. Let the line x=k divide the area enclosed by

$$\left(1-x
ight)^2=y, x=0, y=0$$
 into two parts

 $R_1(0 \leq x \leq k)$ and $R_2(k \leq x \leq 1)$ such that

$$R_1=rac{31}{96}+R_2$$
 then k=.....

25. How many real solutions does the equation

$$2\sin x=x^2-x\pi+rac{\pi^2+8}{4}$$
 have ?

View Text Solution

26. If A and B are two independent events such that $P(\overline{A}\cap B)=\frac{2}{15}$ and $P(A\cap \overline{B})=\frac{1}{6}$ and p_1,p_2 are possible value of P(B), then evaluate $\frac{1}{p_1}+\frac{1}{p_2}$

27. The function defined by f(x)

$$x=\left\{egin{array}{ll} \left(x^2+e^{rac{1}{2}-x}
ight)^{-1} & x
eq 2 \ k & x=2 \end{array}
ight.$$
 is continuous from

right at the point x=2, then k is equal to

View Text Solution

28. Let $C_1: y^2 = 4\Big[\sqrt{y}\Big]x, C_2: x^2 = 4\Big[\sqrt{x}\Big]y$ represent two curves where [.] [] represents the greatest integer function. The area enclosed between

 C_1 and C_2 within the same square formed by the

lines $x=1,\,hy=1,\,x=4,\,y=4$ is A, then the value of [A] is equal to

29. If
$$S_n = \sum_{k=1}^{4n} \left(-1 \right)^{\frac{k(k+1)}{2}} k^2$$
, then the values of S_8 is equal to

30. Evaluate $8\cos 36^{\circ}\cos 72^{\circ}\cos 108^{\circ}\cos 144^{\circ}$

