©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 42

Mathematics Single Choice

1. Let $\left(1-x-2 x^{2}\right)^{6}=1+a_{1} x+a_{2} x^{2}+\ldots+a_{12} x^{12}$. Then $\frac{a_{2}}{2^{2}}+\frac{a_{4}}{2^{4}}+\frac{a_{6}}{2^{6}}+\ldots .+\frac{a_{12}}{2^{12}}$ is equal to
A. -1
B. $-\frac{1}{2}$
C. 0
D. $\frac{1}{2}$

Answer: B

- View Text Solution

2. Let z, w be two complex numbers such that $|\mathrm{z}|=1$ and $\frac{w-1}{w+1}=\left(\frac{z-1}{z+1}\right)^{2}$. Then maximum value of $|\mathrm{w}+1|$ is :-
A. $\sqrt{2}$
B. 2
C. 1
D. $1+\sqrt{2}$

Answer: B

3. If (x, y) are the co-ordinates of a point in the plane, then
then $\left|\begin{array}{lll}3 & 4 & 2 \\ 5 & 8 & 2 \\ x & y & 2\end{array}\right|=0$ represent
A. a. st. line || to y-axis
B. a st., line || to x-axis
C. a st. Ine
D. a circle

Answer: C

D View Text Solution
4. There are 7A \& 6B and they are to be arranged linearly, then number of palindromes are
A. 30
B. 40
C. 50
D. None of these

Answer: D

D View Text Solution

5. If range of $f(x)=\frac{x^{2}-3 x+2}{x^{2}-a x+4}$ is $\mathrm{R}-\{1\}$ then sum of all possible real value(s) of 'a' is
A. 4
B. 3
C. 5
D. None

Answer: A

View Text Solution
6. $\lim _{n \rightarrow \infty} \sum_{x=1}^{n} \frac{2 r-1}{2^{r}}$ is equal to -
A. 1
B. $\frac{3}{2}$
C. 3
D. 6

Answer: C

7. Consider the following relations $R=\{(x, y) \mid x, y$ are real numbers and $x=$ wy for some rational number $w\}$ $S=\left\{\left(\frac{m}{n}, \frac{p}{q}\right)\right.$ where $\mathrm{m}, \mathrm{n}, \mathrm{p}$ and q are integers such that n, $q \neq 0$ and $\mathrm{qm}=\mathrm{pn}\}$. Then
A. both R, S are equivalence relations
B. R is an equivalence relation, but not S.
C. S is an equivalence relation, but not R.
D. neither R nor S is an equivalence relation.

Answer: C

- View Text Solution

8. If the locus of a point, whose chord of contact with respect to the circle $x^{2}+y^{2}=4$ is a tangent to the curve $x y=1$ is
$x y=c^{2}$, then the value of c^{2} is
A. 2
B. 4
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: B

D View Text Solution

9. If the variable line $y=k x+2 h$ is tangent to an ellipse $2 x^{2}+3 y^{2}=6$, then locus of $\mathrm{P}(\mathrm{h}, \mathrm{k})$ is a conic C whose eccentricity equals
A. $\frac{\sqrt{5}}{2}$
B. $\frac{\sqrt{7}}{3}$
C. $\frac{\sqrt{7}}{2}$
D. $\sqrt{\frac{7}{3}}$

Answer: D

- View Text Solution

10. If $y=m x$ bisect two chords of $y^{2}=4 x$ from $(4,4)$, then m can't be
A. $m=\frac{3}{4}$
B. $m=\frac{1}{2}$
C. $m=\frac{5}{6}$
D. $m=-\frac{1}{2}$
11. A line $L_{1}=\frac{x}{10}+\frac{y}{8}=1$ intersects the coordinate axes at points A and B . Another line L_{2} perpendicular to L_{1} intersects the coordinate axes at C and D. The locus of circumcentre of $\triangle A B D$ is
A. $5 x-4 y=9$
B. $5 x-4 y=18$
C. $4 x-5 y=9$
D. $4 x-5 y=18$

Answer: A

12. A plane meets the coordinate axes in points A, B, C and the centroid of the triangle ABC is (α, β, γ). The equation of the plane is
A. $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$
B. $\alpha x+\beta y+\gamma z=3 \alpha \beta \gamma$
C. $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=\frac{1}{2}$
D. None of these

Answer: A

D View Text Solution

13. Let $\alpha \in R$ and the three vectors
$\vec{a}=\alpha \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\alpha \hat{k}$ and $\vec{c}=\alpha \hat{i}-2 \hat{j}+3 \hat{k}$
.Then the set $S=\{\alpha: \vec{a}, \vec{b}$ and \vec{c} are coplanar $\}$
A. is singleton
B. Contains exactly two numbers only one of which is positive
C. Contains exactly two positive numbers
D. is empty

Answer: D

- View Text Solution

14. If $\lim _{x \rightarrow 0}\left(x^{-3} \sin 3 x+a x^{-2}+b\right)$ exists and is equal to 0 , then
A. $a=-3$ and $b=9 / 2$
B. $a=3$ and $b=9 / 2$
C. $a=-3$ and $b=-9 / 2$
D. $a=3$ and $b=-9 / 2$

D View Text Solution

15. Consider $f: R^{+} \rightarrow R$ such that $f(3)=1$ for $a \in R^{+}$and $f(x) \cdot f(y)+f\left(\frac{3}{x}\right) f\left(\frac{3}{y}\right)=2 f(x y) \forall x, y \in R^{+}$then $\mathrm{f}(97)$ can be
A. 1
B. -1
C. 2
D. 97

Answer: A

16. Let $y(x)$ be a solution of $\frac{(2+\sin x)}{(1+y)} \frac{d y}{d x}=\cos x$ If $y(0)=2$, then $y\left(\frac{\pi}{2}\right)$ equals
A. $\frac{5}{2}$
B. 2
C. $\frac{7}{2}$
D. 3

Answer: C

D View Text Solution

17. $\int \frac{d x}{(x-\beta) \sqrt{(x-\alpha)(\beta-x)}}$ is
A. $\frac{2}{\alpha-\beta} \sqrt{\frac{x-\alpha}{\beta-x}}+c$
B. $\frac{2}{\alpha-\beta} \sqrt{(x-\alpha)(\beta-x)}+c$
C. $\frac{\alpha-\beta}{2}(x-\alpha) \sqrt{\beta-x}$
D. None of these.

Answer: A

- View Text Solution

18. If the truth value of p, q and r are F, T and F respectively, then the truth value of
A. $(p \rightarrow q) \wedge(q \rightarrow r)$ is true (T)
B. $(p \rightarrow q) \vee(q \rightarrow r)$ is false (F)
C. $(p \rightarrow q) \leftrightarrow(q \rightarrow r)$ is false (F)
D. $(p \rightarrow q) \rightarrow(q \rightarrow r)$ is true (T)

Answer: C

View Text Solution
19. For a random variable $\mathrm{X}, E(X)=3$ and $E\left(X^{2}\right)=11$. Then, variance X is
A. 8
B. 5
C. 2
D. 1

Answer: C

20. $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \cot ^{-1}\left(\frac{r^{3}-r+\frac{1}{r}}{2}\right)$ is equal to
A. 0
B. π
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: C

D View Text Solution

Mathematics Subjective Numerical

1. Let $A=\left[a_{i j}\right]_{3 \times 3}$ be a matrix such that $A A^{T}=4 I$ and $a_{i j}+2 c_{i j}=0$ (where $C_{i j}$ is the cofactor of $a_{i j}$ and I is the unit
matrix of order 3). If the determinents are related by
$\left|\begin{array}{ccc}a_{11}+4 & a_{12} & a_{13} \\ a_{21} & a_{22}+4 & a_{23} \\ a_{31} & a_{32} & a_{33}+4\end{array}\right|+5 \lambda\left|\begin{array}{ccc}a_{11}+1 & a_{12} & a_{13} \\ a_{21} & a_{21}+1 & a_{23} \\ a_{31} & a_{32} & a_{33}+1\end{array}\right|=0$ then $10 \lambda=$

- View Text Solution

2. The rate at which surface area of the cube increases (in cm^{2} / sec), when the volume of a cube is increasing at a rate of $18 \mathrm{~cm}^{3}$
/ sec and edge of the cube is 12 cm , is

D View Text Solution

3. If $y=2^{\log _{2}(x)^{2 x}}+\left(\tan \frac{\pi x}{4}\right)^{\frac{4}{\pi x}}$, then the value of $\frac{d y}{d x}$ at $x=1$ is
4. The value of the integral $\int_{-10}^{1} \frac{\left|\frac{2[x]}{3 x-[x]}\right|}{\frac{2[x]}{3 x-[x]}}$, where [.] represents

GIF is p / q where p and q are relatively prime then $p+q$ is equal to

- View Text Solution

5. Find the area of the region in first quadrant in which points are nearer to the origin then to the line $\mathrm{x}=3$

- View Text Solution

6. Let $f(x)=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ and f is differentiable everywhere on R except at two isolated points, say x_{1} and x_{2}. Then the value of $x_{1}^{2}+x_{2}^{2}$ is equal to
7. Tangents are drawn to the hyperbola $x^{2}-9 y^{2}=9$ from (3, 2).

Find the area of the triangle that these tangents form with their chord of contact.

- View Text Solution

8. If pth, qth and rth terms of a H.P. be respectively a, b and c then prove that $(q-r) b c+(r-p) c a+(p-q) a b=0$

- View Text Solution

9. $A B C$ is a triangular park with $A B=A C=100$ metres. A vertical tower is situated at the mid-point of $B C$. If the angles of elevation of the top of the tower at A and B are $\cot ^{-1}(3 \sqrt{2})$
and $\operatorname{cosec}^{-1}(2 \sqrt{2})$ respectively, then the height of the tower (in metres) is :

- View Text Solution

10. Sum of all solutions in $[0,100]$ of the equation $\sin \pi x+\cos \pi x=0$, is
