©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 43

Mathematics

1. The co-efficient of x in the expansion of $\left(x^{2}+\frac{x}{x}\right)^{5}$ is
A. 20 c
B. 10 x
C. $10 c^{3}$
D. $20 c^{3}$

D View Text Solution

2. The greatest and the least value of $\left|z_{1}+z_{2}\right|$ if $z_{1}=24+7 i$ and $\left|z_{2}\right|=6$ respectively are
A. 31,19
B. 19,25
C. $-19,-25$
D. $-25,-19$

Answer: A

- View Text Solution

3.

$\Delta(x)=\left|\begin{array}{ccc}e^{x} & \sin 2 x & \tan x^{2} \\ \ln (1+x) & \cos x & \sin x \\ \cos x^{2} & e^{x}-1 & \sin x^{2}\end{array}\right|=A+B x+C x^{2}+\ldots .$. then $B=$
A. 0
B. 1
C. 2
D. None of these

Answer: A

- View Text Solution

4. In a regular decagon, the probability that the two diagonal chosen at random will intersect inside the decagon is
A. $\frac{6}{17}$
B. $\frac{12}{17}$
C. $\frac{5}{17}$
D. None

Answer: A

D View Text Solution

5. Let $f(x)=\left(x^{2}-5 x+4\right)\left(x^{2}+5 x+4\right)$ and α, β, γ (where $\alpha<\beta<\gamma)$ are roots of $f^{\prime}(x)=0$, then the value of $\frac{[\alpha]^{2}+[\beta+1]}{[\gamma]}$ is equal to (where [.] denote greatest integer function)
A. 0
B. $\frac{5}{3}$
C. $\frac{5}{2}$
D. 5

Answer: D

- View Text Solution

6. If $\sum_{r=1}^{\infty} \tan ^{-1}\left(\frac{4}{r^{2}+r+16}\right)=\tan ^{-1}\left(\frac{\alpha}{10}\right)$, then α is
A. 80
B. 40
C. 20
D. 30

Answer: B

7. For any two real numbers θ and ϕ, we defined $\theta R \phi a s \sin ^{2} \theta+\cos ^{2} \phi=1$, then relation R is
A. reflexie but not transitive
B. symmetric but not reflexive
C. an equivalence relation
D. none of these

Answer: C

D View Text Solution

8. Let $A B$ be the chord of constant of the point $(5,-5)$ w.r.t the circe $x^{2}+y^{2}=5$, then the locus of the orthocentre of $\triangle P A B$ where P is any point moving on the circle is

$$
\text { A. }(x-1)^{2}+(y+1)^{2}=5
$$

B. $(x-1)^{2}+(y+1)^{2}=\frac{5}{2}$
C. $(x+1)^{2}+(y-1)^{2}=5$
D. $(x+1)^{2}+(y+1)^{2}=\frac{5}{2}$

Answer: A

D View Text Solution

9. The eccentricity of the hyperbola
$x^{2}-3 y^{2}-2 x-8=0$ is
A. 23
B. 13
C. $\frac{2}{\sqrt{3}}$
D. $\frac{3}{2}$
10. The point (2a, a) lies inside the region bounded by the parabola $x^{2}=4 y$ and its latus rectum. Then,
A. $0 \leq a \leq 1$
B. $0<a<1$
C. $a>1$
D. $a<0$

Answer: B

D View Text Solution

11. Let A be $(100,50)$, a point B on the line $y=x$ and point C on x axis such that $A B+B C+C A$ is minimum, then the coordinates of C
A. $(50,0)$
B. $\left(\frac{200}{3}, 0\right)$
C. $\left(\frac{250}{3}, 0\right)$
D. $\left(\frac{400}{3}, 0\right)$

Answer: C

- View Text Solution

12. If the line $\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-1}{-1}$ intersects the plane
$2 x+3 y-z+13=0$ at a point P and the plane
$3 x+y+4 z=16$ at a point Q , then PQ is equal to
A. $2 \sqrt{14}$
B. $\sqrt{14}$
C. $2 \sqrt{7}$
D. 14

Answer: A

- View Text Solution

13. If $\vec{a}=\vec{i}+\vec{j}+\vec{k}$,
$\vec{b}=4 \vec{i}+3 \vec{j}+4 \vec{k}$ and $\vec{c}=\vec{i}+\alpha \vec{j}+\beta \vec{k}$ are lineerly independent vectors and $|\vec{c}|=\sqrt{3}$, then
A. $\alpha=1, \beta=-1$
B. $\alpha=1, \beta= \pm 1$
C. $\alpha=-1, \beta= \pm 1$
D. $\alpha=+1, \beta=1$
14. If $f(x)=||\sin (|x|-2)|-3|$, then
A. $\mathrm{f}(\mathrm{x})$ is continuous but not differentiable at $x=4$
B. $f(x)$ is discontinuous at $x=4$
C. $f(x)$ is differentiable at $x=4$ and $f^{\prime}(4)=\cos 2$
D. $f(x)$ is differentiable at $x=4$ and $f^{\prime}(4)=-\cos 2$

Answer: D

D View Text Solution

15. Let f be a composite function of x defined by
$f(u)=\frac{1}{u^{2}+u-2}{ }^{\prime} u(x)=\frac{1}{x-1}$.
Then the number of points x where f is discontinuous is:
A. 6
B. 3
C. 2
D. 1

Answer: B

- View Text Solution

16. $\int \frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}}=a x+b \ln$ then $\left(4 e^{x}+5 e^{-x}\right)+c$,
A. $a=-1 / 8, b=7 / 8$
B. $a=1 / 8, b=-7 / 8$
C. $1=1 / 8, b=7 / 8$
D. $a=-1 / 8, b=-7 / 8$

- View Text Solution

17. Let $f(x+y)=f(x) . f(y)$ for all x and y and $\mathrm{f}(1)=2$. If in a triangle ABC, $a=f(3), b=f(1)+f(3), c=f(2)+f(3)$, then 2
A is equal to
A. C
B. 2 C
C. 3C
D. 5C

Answer: A

- View Text Solution

18. Let $f(x)=\sin x+2 \sin ^{2} x+3 \sin ^{3} x+4 \sin ^{4} x+\ldots . \infty$ then number of solution (s) of equation $f(x)=2$
in $x \in[-\pi, \pi]-\left\{ \pm \frac{\pi}{2}\right\}$ is -
A. 0
B. 2
C. 4
D. 8

Answer: B

D View Text Solution

19.

$\theta=\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{1}{3}\right)$ and $\theta_{2}=\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{1}{3}\right)$,
then
A. $\theta_{1}>\theta_{2}$
B. $\theta_{1}=\theta_{2}$
C. $\theta_{1}<\theta_{2}$
D. None of these

Answer: C

- View Text Solution

20. If p is true and q is false then which of the following is having its truth value as true ?
A. $p \rightarrow \sim q$
B. $p \leftrightarrow q$
C. $p \rightarrow \sim p$
D. Both (a) and(c)

D View Text Solution

21. Let x be the number of diagonal matrices A of rela etries and order 3×3, such that $A^{7}+3 A^{5}+7 A=11 I$ and y be the number of diagonal matrices B of complex entries with at least ne non zero real entry and order 3×3, such that $B^{5}=I$, then $y-55 x=$ (Where I is an identity matrix of order 3×3)

D View Text Solution

22. If $d: A \rightarrow B$ where $A=\{2,3,4\}$ and $B\{6,2,3,4,5\}$, then the number of non-decreasing functions on f that can be defined are \qquad
23. If the function $f(x)=x^{3}+e^{\frac{\pi}{2}}$ and $g(x)=f^{-1}(x)$, then the value of $\mathrm{g}^{\prime}(1)=$ \qquad

- View Text Solution

24. $\int_{0}^{\frac{1}{2}} \frac{1+\sqrt{3}}{\left((x+1)^{2}(1-x)^{6}\right)^{\frac{1}{4}}} d x=$

D View Text Solution

25. Let $f(x)$ be a differentiable function and satisfying the equation
$f^{\prime}(x)+f(x)=4 x e^{-x} \cdot \sin 2 x$ and $f(0)=0$ if
$\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f(k \pi)=\frac{-p \pi e^{\pi}}{\left(e^{\pi}-1\right)^{2}}$ then $\mathrm{p}=$

- View Text Solution

26. The mean of 10 terms is 3 . If the first term is increased by 1 , second by 2 , third by 3 and so on, then the new mean is -

D View Text Solution

27. Find the value of $f\left(e^{4.2}\right)$, if $3 f(x)-f\left(\frac{1}{x}\right)=\log x^{4}$ for all x where $x \neq 0$.

- View Text Solution

28.

$F(x)=\int_{x}^{\frac{\pi}{3}+x^{2}} 2 \cos ^{2} t d t, x \in R$ and $f:\left[0, \frac{1}{2}\right] \rightarrow[0, \infty)$ be a continuous function. For
$a \in\left[0, \frac{1}{2}\right] . I f F^{\prime}(a)+2$ is the area of the region bounded by $y=f(x), x=0, x$-axis and $x=a$, then find $f(0)$.
29. If number of ways of arranging letters aaaabbbbccdd' in a line so that there should be at least one 'b' in between $2 a$ ' sisk. Then |14855-k| is

D View Text Solution

30. Consider the three vectors
$\lambda \hat{i}+\hat{j}+2 \hat{k}, \hat{i}+\lambda \hat{j}-\hat{k}$ and $2 \hat{i}-\hat{j}+\lambda \hat{k}$ are coplanar, ten $|\lambda|$ is equal to
