

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 44

Mathematics

1. Coefficient of x^6 in the epansion

$$\left(x+rac{1}{x^2}
ight)^6$$
 is

A. 10

B. 15

C. 16

D. None

Answer: D

2. For any complex number z in the largand plane, the minimum value of

$$egin{aligned} &|Z|+ig|z-e^{-lpha}ig|_+z-5e^{ilpha}ig|\ &+ig|z-7e^{ilpha}ig|+ig|Z-32e^{ilpha}ig| \end{aligned}$$

A. 22

- B. 32
- C. 38
- D. 42

Answer: C

3. Let A and B be 3×3 symmetric matrices such that X = AB + BA and Y = AB -BA. Then $[(XY)^T$ is equal to $(XY)^T$ is the transpose of matrix XY.]

A. XY

B. YX

 $\mathsf{C}.-XY$

 $\mathsf{D}. - YX$

iew Text Solution

Answer: D

4. Three persons A, B, C throw a die in succession. The one getting six wins. If A starts then the probability of B winning is

A.
$$\frac{36}{91}$$

B. $\frac{25}{91}$
C. $\frac{41}{91}$
D. $\frac{30}{91}$

Answer: D

5. Remainder wen

$$\sum_{r=0}^n \left((r!)^3 + (r circles)^2 + (r!)
ight)$$
 is divided by

 $36(n\geq 4)$ is equal to

A. 2

B. 8

C. 26

D. none of these

Answer: C

6. If A is the set of een natural numbers less than 9 and B is the set of prime numbes less than 7, then the number of relation from set A to set B is

A. 2^8

 $\mathsf{B.}\,2^{12}$

 $\mathsf{C.}\,4^2$

 $\mathsf{D.}\,2^{12}-1$

Answer: B

7. Radius of largest circle which passes through the focus of the parabola $y^2 = 5x$, and is contained in the parabola, is

$$\mathsf{B}.\,\frac{21}{5}$$

C. 5

D.
$$\frac{26}{5}$$

Answer: C

8. Area of triangle formed by lines
$$x^2 - y^2 = 0$$

and any tangent to the hyperbola $x^2 - y^2 = 16$ is :
A. 2 sq. units

B. 4 sq. units

C. 8 sq. units

D. 16 sq. units

9. Tangent to parabola $y^2 = 4p(x+1)$ cuts hyperbola xy = 2 I A and B, then locus of mid points of AB is

A.
$$rac{x}{y} + (2x-1) = 0$$

B. $rac{x^2}{y^2} + 2x - 1 = 0$
C. $rac{x}{y} + (2x-1)^2 = 0$
D. $rac{x^2}{y^2} + (2x+1) = 0$

10. A line passes through (2,2) and is perpendicular to the line 3x + y = 3 its y intercept is

A.
$$\frac{1}{3}$$

B. $\frac{2}{3}$
C. 1
D. $\frac{4}{3}$

11. The equation of a plane containing the line of intersection of the planes 2xy - 4 = 0 and y + z - 4 = 0 and passing

through the point (1,1,0) is :

A.
$$x+3y+z=4$$

B.
$$x-y-z=0$$

C. x - 3y - 2z = -2

D.
$$2x-z=2$$

Answer: B

View Text Solution

12. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be 3 mutually perpendicular unit vectors. If an unknow vector \overrightarrow{x} satisfies the equation

$$\overrightarrow{a} imes \left(\left(\overrightarrow{x} - \overrightarrow{b}
ight) imes \overrightarrow{a}
ight) + \overrightarrow{b}$$
 then \overrightarrow{x}
 $imes \left(\left(\overrightarrow{x} - \overrightarrow{c}
ight) imes \overrightarrow{b}
ight) + \overrightarrow{c}$
 $imes \left(\left(\overrightarrow{x} - \overrightarrow{a}
ight) imes \overrightarrow{c}
ight) = \overrightarrow{0}$ is equal to

Answer: B

View Text Solution 13. The value of $rac{\left(1+4x+x^2 ight)^{rac{1}{x}}-\left(1+4x-5x^2 ight)^{rac{1}{x}}}{x}$ is

lim $x \rightarrow 0$ A. $5e^4$

 $\mathsf{B.}\,6e^4$

 $\mathsf{C.}\,7e^4$

D. $8e^4$

Answer: B

View Text Solution

14. Let
$$f(x)= egin{cases} rac{\sin ax^2}{x^2} & x
eq 0 \ rac{3}{4}+rac{1}{4a} & x=0 \end{cases}$$
 for what

values of a, f (x) is continuous at x =0

A. 1,
$$-\frac{1}{4}$$

B. 1, 0
C. $\frac{1}{4}$, -1

D. noen of these

Answer: A

15. The general solution of the differential equation,

$$\sin 2xigg(rac{dy}{dx}-\sqrt{ an x}igg)-y=0, ext{ is}$$

A. $y\sqrt{ an x}=x+c$
B. $y\sqrt{ an x}= an x+c$
C. $y\sqrt{ an x}= an x+c$
D. $y\sqrt{ an x}= an x+c$

16.

$$\int rac{dx}{\cos^3 x \sqrt{2\sin 2x}} = (\tan x)^4 + C(\tan x)^B, \ + K$$

where k is a constant of integration, then A + B

+ C equals

A.
$$\frac{16}{5}$$

B. $\frac{27}{10}$
C. $\frac{7}{10}$
D. $\frac{21}{5}$

Answer: A

lf

Answer: B

View Text Solution

18. The solution of the equation
$$\cos^2 x - 2\cos x = 4\sin x$$
 is $+4\sin^2 x (0 \le x \le \pi)$

A.
$$\pi+ an^{-1}igg(rac{-1}{2}igg)$$

B. $\pi- ext{cot}^{-1}igg(rac{1}{2}igg)$

$$\mathsf{C}.\,\pi-\tan^{-1}2$$

Answer: A

19. The domain set of defination of the function $f(x) = \sqrt{\cos(\sin x)} + \sin^{-1} \Big(rac{1+x^2}{2x} \Big)$ is

A.
$$-1 < x \leq 1$$

 $\mathsf{B.} x \geq 1$

$$\mathsf{C.}\,x\leq 1$$

D. $x = \pm 1$

Answer: D

View Text Solution

20. Which is a contradiction from the following

A.
$$(p \wedge q) \wedge$$
 ~ $(p \lor q)$

B.
$$p \land (\ { cdot} p \land q)$$

$$\mathsf{C.}\left(\pi mpliesq
ight) \Rightarrow p$$

D. none of these

Answer: A

?

View Text Solution

21. Let , A is a non-singular idempotent matrix of order 3 imes 3 and B is an involuntary matri of same order. If $\det(A)
eq$ det (B) , then det $(A^{-5}B^{-2}) =$

22. If a, b, c, d and e ar positive ral numbers such that

a + b + c + d + e = 15 and

 $ab^2c^3d^4e^5=(120)^3(50),$ then the value of

 $a^2 + b^2 + c^2 + d^2 + e^2$ is

23. A circular sector is formed by a thread of length I, Then the ratio of maximum area of sector thus formed to maximum area of rectangle formed by same thread is

24. The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On review, it was found that an

observation 8 was incorrect. Then the correct standard deviation if the wrong item is omitted is

View Text Solution

25. If 'A' is the number of ways such that the number 7056 can be resolved as a product of two factors then find the digit in the units place of 'A'.

View Text Solution

27. Let the area of the region bounded by $x+1=0, y=0, y=x^2+x+1$ and tangent to $y=x^2+x+1$ at A, then 3A is

View Text Solution

28. If \hat{a} is parallel to the line of intersection of the plane determined by the vectors $\hat{j} + \hat{k}$, \hat{j} and the plane determined by the vectors $\hat{i} + \hat{j}$, $\hat{j} - \hat{k}$. If the angle between \hat{a} and $2\hat{i} + \hat{j} - 2\hat{k}$ is $n\pi$, then the value of n is

