©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 44

Mathematics

1. Coefficient of x^{6} in the epansion
$\left(x+\frac{1}{x^{2}}\right)^{6}$ is
A. 10
B. 15
C. 16
D. None

Answer: D

D View Text Solution

2. For any complex number z in the largand plane, the minimum value of
$|Z|+\left|z-e^{-\alpha}\right|_{+} z-5 e^{i \alpha} \mid$
$+\left|z-7 e^{i \alpha}\right|+\left|Z-32 e^{i \alpha}\right|$
A. 22
B. 32
C. 38
D. 42

Answer: C

- View Text Solution

3. Let A and B be 3×3 symmetric matrices
such that $X=A B+B A$ and $Y=A B-B A$. Then
$\left[(X Y)^{T}\right.$ is equal to $(X Y)^{T}$ is the transpose of matrix XY.]
A. $X Y$
B. $Y X$
C. $-X Y$
D. $-Y X$

Answer: D

D View Text Solution
4. Three persons A, B, C throw a die in succession. The one getting six wins. If A starts then the probability of B winning is
A. $\frac{36}{91}$
B. $\frac{25}{91}$
C. $\frac{41}{91}$
D. $\frac{30}{91}$

Answer: D
5. Remainder wen
$\sum_{r=0}^{n}\left((r!)^{3}+(r \sim)^{2}+(r!)\right)$ is divided by $36(n \geq 4)$ is equal to
A. 2
B. 8
C. 26
D. none of these

- View Text Solution

6. If A is the set of een natural numbers less
than 9 and B is the set of prime numbes less
than 7, then the number of relation from set A
to set B is
A. 2^{8}
B. 2^{12}
C. 4^{2}
D. $2^{12}-1$

Answer: B

D View Text Solution

7. Radius of largest circle which passes through the focus of the parabola $y^{2}=5 x$, and is contained in the parabola, is
A. 4
B. $\frac{21}{5}$
C. 5
D. $\frac{26}{5}$

Answer: C

D View Text Solution

8. Area of triangle formed by lines $x^{2}-y^{2}=0$
and any tangent to the hyperbola
$x^{2}-y^{2}=16$ is :
A. 2 sq. units
B. 4 sq. units
C. 8 sq. units
D. 16 sq. units

Answer: D

D View Text Solution

9. Tangent to parabola $y^{2}=4 p(x+1)$ cuts hyperbola $x y=2$ I A and B , then locus of mid points of $A B$ is

$$
\begin{aligned}
& \text { A. } \frac{x}{y}+(2 x-1)=0 \\
& \text { B. } \frac{x^{2}}{y^{2}}+2 x-1=0 \\
& \text { C. } \frac{x}{y}+(2 x-1)^{2}=0 \\
& \text { D. } \frac{x^{2}}{y^{2}}+(2 x+1)=0
\end{aligned}
$$

Answer: D

D View Text Solution

10. A line passes through $(2,2)$ and is perpendicular to the line $3 x+y=3$ its y intercept is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 1
D. $\frac{4}{3}$

Answer: D

D View Text Solution

11. The equation of a plane containing the line of intersection of the planes
$2 x y-4=0$ and $y+z-4=0$ and passing
through the point $(1,1,0)$ is :
A. $x+3 y+z=4$

$$
\text { B. } x-y-z=0
$$

C. $x-3 y-2 z=-2$

D. $2 x-z=2$

Answer: B

D View Text Solution

12. Let $\vec{a}, \vec{b}, \vec{c}$ be 3 mutually perpendicular unit vectors. If an unknow vector \vec{x} satisfies
the equation
$\vec{a} \times((\vec{x}-\vec{b}) \times \vec{a})+\vec{b}$ then \vec{x}
$\times((\vec{x}-\vec{c}) \times \vec{b})+\vec{c}$
$\times((\vec{x}-\vec{a}) \times \vec{c})=\overrightarrow{0}$ is equal to
A. $\vec{a}+\vec{b}+\vec{c}$
B. $\frac{\vec{a}+\vec{b}+\vec{c}}{2}$
C. $\frac{\vec{a}+\vec{b}+\vec{c}}{3}$
D. $\frac{\vec{a}+\vec{b}+\vec{c}}{4}$

Answer: B

D View Text Solution

13.

The
value
of
$\lim _{x \rightarrow 0} \frac{\left(1+4 x+x^{2}\right)^{\frac{1}{x}}-\left(1+4 x-5 x^{2}\right)^{\frac{1}{x}}}{x}$ is
A. $5 e^{4}$
B. $6 e^{4}$
C. $7 e^{4}$
D. $8 e^{4}$

Answer: B

D View Text Solution

14. Let $f(x)= \begin{cases}\frac{\sin a x^{2}}{x^{2}} & x \neq 0 \\ \frac{3}{4}+\frac{1}{4 a} & x=0\end{cases}$
for what
values of $a, f(x)$ is continuous at $x=0$

$$
\text { A. } 1,-\frac{1}{4}
$$

B. 1,0
C. $\frac{1}{4},-1$
D. noen of these

Answer: A

- View Text Solution

15. The general solution of the differential
$\sin 2 x\left(\frac{d y}{d x}-\sqrt{\tan x}\right)-y=0$, is
A. $y \sqrt{\tan x}=x+c$
B. $y \sqrt{\cot x}=\tan x+c$
C. $y \sqrt{\tan x}=\cot x+c$
D. $y \sqrt{\cot x}=x+c$

Answer: D

- View Text Solution

16.

$\int \frac{d x}{\cos ^{3} x \sqrt{2 \sin 2 x}}=(\tan x)^{4}+C(\tan x)^{B},+K$
where k is a constant of integration, then $A+B$
$+C$ equals
A. $\frac{16}{5}$
B. $\frac{27}{10}$
C. $\frac{7}{10}$
D. $\frac{21}{5}$

Answer: A
17. The value of $\prod_{r=}^{7} \cos \frac{\pi r}{15}$ is

> A. $\frac{1}{64}$
> B. $\frac{1}{128}$
> C. $\frac{1}{32}$
> D. $\frac{1}{4}$

Answer: B
18. The solution of the equation

$$
\cos ^{2} x-2 \cos x=4 \sin x
$$

$+4 \sin ^{2} x(0 \leq x \leq \pi)$

$$
\begin{aligned}
& \text { A. } \pi+\tan ^{-1}\left(\frac{-1}{2}\right) \\
& \text { B. } \pi-\cot ^{-1}\left(\frac{1}{2}\right) \\
& \text { C. } \pi-\tan ^{-1} 2
\end{aligned}
$$

D. none of these

Answer: A
19. The domain set of defination of the
function
$f(x)=\sqrt{\cos (\sin x)}+\sin ^{-1}\left(\frac{1+x^{2}}{2 x}\right)$ is

$$
\begin{aligned}
& \text { A. }-1<x \leq 1 \\
& \text { В. } x \geq 1 \\
& \text { C. } x \leq 1 \\
& \text { D. } x= \pm 1
\end{aligned}
$$

Answer: D

20. Which is a contradiction from the following

?

A. $(p \wedge q) \wedge \sim(p \vee q)$
B. $p \wedge(\sim p \wedge q)$
C. $(\pi m p l i e s q) \Rightarrow p$
D. none of these

Answer: A

- View Text Solution

21. Let, A is a non-singular idempotent matrix of order 3×3 and B is an involuntary matri of same order. If $\operatorname{det}(A) \neq \operatorname{det}(\mathrm{B})$, then det $\left(A^{-5} B^{-2}\right)=$

D View Text Solution

22. If a, b, c, d and e ar positive ral numbers

such that

$a+b+c+d+e=15$ and
$a b^{2} c^{3} d^{4} e^{5}=(120)^{3}(50)$, then the value of
$a^{2}+b^{2}+c^{2}+d^{2}+e^{2}$ is

View Text Solution

23. A circular sector is formed by a thread of
length I, Then the ratio of maximum area of sector thus formed to maximum area of rectangle formed by same thread is

- View Text Solution

24. The mean and standard deviation of 20
observations are found to be 10 and 2, respectively. On review, it was found that an
observation 8 was incorrect. Then the correct standard deviation if the wrong item is omitted is

D View Text Solution

25. If ' A ' is the number of ways such that the number 7056 can be resolved as a product of two factors then find the digit in the units place of 'A'.

D View Text Solution

26. Let f be a function such that
$f(x)+f\left(\frac{1}{1-x}\right)=\frac{2(1-2 x)}{x(1-x)}$
where
$x \in R-\{0,1\}$, then the value of $\mathrm{f}(2)$ must be

D View Text Solution

27. Let the area of the region bounded by
$x+1=0, y=0, y=x^{2}+x+1$ and
tangent to $y=x^{2}+x+1$ atx $=1$ at A , then
$3 A$ is
28. If \hat{a} is parallel to the line of intersection of the plane determined by the vectors $\hat{j}+\hat{k}, \hat{j}$ and the plane determined by the vectors $\hat{i}+\hat{j}, \hat{j}-\hat{k}$. If the angle between \widehat{a} and $2 \hat{i}+\hat{j}-2 \hat{k}$ is $n \pi$, then the value of n is

D View Text Solution

