

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 46

Mathematics

1. If sum o three middle terms in the expansion

of
$$\left(k+rac{1}{k}
ight)^4$$
 is 23, then number of values of k

A. 1

 $\mathsf{B.}\,2$

C. 3

 $\mathsf{D.}\,4$

Answer: D

View Text Solution 2. A value of θ for which $\frac{(2\cos\theta + i)}{(\sin\theta - 1 - I\cos\theta)}$ is purely real is

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{3}$
C. $-\frac{\pi}{6}$
D. $-\frac{\pi}{2}$

Answer: C

3. If
$$\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0$$
 where $a, b, c \neq 1$ then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$ is equal to

A. 0

 $\mathsf{B.1}$

 $\mathsf{C.}\,2$

 $\mathsf{D.}-2$

Answer: B

4. Three distinct vertices are randomly selected among the vertices of a cube. The

probabiltiy that these vertices form an

isosceles or equilateral triangle is

A.
$$\frac{3}{7}$$

B. $\frac{2}{7}$
C. $\frac{1}{3}$
D. $\frac{4}{7}$

Answer: D

5. Sum of all possible values of x which satisfy the equation $\log_3(x-3) = \log_9(x-1)$ is

A. 2

B. 5

C. 7

D. 10

Answer: B

6. if a,b,c are in A.P. b,c,d are in G.P. and c,d,e are

in H.P then a,c,e are in

A. A.P

B. G.P

C. H.P

D. None of these

Answer: B

7. Let $A=\{1,2,3,4\}$. The number of different unordered pairs (B,C) that can be formed such that $B\subseteq A, C\subseteq A$ and $B\cap C=\phi$ is

A. 3^4

 $\mathsf{B.}\,4^3$

 $C. 2^4$

D. 41

Answer: A

8. The equation of the circle whose radius is 5 and which touches the circle

$$x^2+y^2\pm 2x-4y-20=0$$
 at the point (5,5) is

A.
$$x^2 + y^2 + 18x + 16y + 120 = 0$$

B. $x^2 + y^2 - 18x - 16y + 120 = 0$
C. $x^2 + y^2 - 18x + 16y + 120 = 0$
D. $x^2 + y^2 + 18x - 16y + 120 = 0$

Answer: B

9. Let P be the point of intersection of the common tangents to the parabola $y^2 = 12x$ and the hyperbola $8x^2 - y^2 = 8$. If S ad S' denote the foci of the hyperbola where S lies on the positive x-axis then P divides SS' in a ratio

A. 5:4

B. 14: 13

C.2:1

D. 13:11

Answer: A

View Text Solution

10. The equation of a common tangent to $y^2 = 4x$ and the curve $x^2 + 4y^2 = 8$ can be

A.
$$x-2y+2=0$$

B. x + 2y + 4 = 0

C.
$$x - 2y = 4$$

D.
$$x+2y=4$$

Answer: B

11. If the expression
$$2x^2 + mxy + 3y^2 - 5y - 2$$
 can be expressed as the product of two linear factors of the form $ax + by + c$ then the value of m can be

A. 5

B. 6

C. 7

D. 8

Answer: C

12. A plane bisects the line segment joining the points (1,2,3) and (3,4,5) at right angles. Then this plane also passes through the point:

A. (1,2,-3)

B. (-1,2,3)

C. (-3,2,1)

D. (3,2,1)

Answer: C

View Text Solution

13. If the volume of parallelepiped formed by the vectors $\hat{i} + \lambda \hat{j} + \hat{k}$, $\hat{j} + \lambda \hat{k}$ and $\lambda \hat{i} + \hat{k}$ is minimum then λ is equal to

Answer: C

View Text Solution

14. Consider point P with ordinate t lying on

the curve
$$\displaystyle rac{x^2}{4} - y^2 = 1, t \in N.$$
 If S_n

represents the minimum disance from point P

to the line $2y-x=0,\,\, ext{then}\,\,\lim_{t o\infty}\,\,(tS_n)$ is

A.
$$\frac{1}{2}$$

B. $\frac{3}{4}$
C. $\frac{1}{\sqrt{5}}$
D. $\frac{2}{\sqrt{5}}$

Answer: C

15. Which of the following functions is differentiable at x=0?

- A. $\cos(|x|)+|x|$
- $\mathsf{B.}\cos(|x|)-|x|$
- $\mathsf{C.sin}(|x|)+|x|$
- D. $\sin(|x|) |x|$

Answer: D

16.
$$rac{dy}{dx} + y = 2e^{2x}$$
 then y is

A.
$$ce^{-x}+rac{2}{3}e^{2x}$$

B.
$$(1+x)e^{-x} + \frac{2}{3}e^{2x} + c$$

$$\mathsf{C.}\,ce^{-x}=\frac{2}{3}e^{2x}+c$$

D.
$$e^{-x} + rac{2}{3}e^{2x} + c$$

Answer: A

17.
$$\int \log 2x dx$$
 is

A.
$$x \log 2x - \frac{x^2}{2}$$

B. $x \log 2x - \frac{x}{2}$
C. $x^2 \log 2x - \frac{x}{2}$
D. $x \log 2x - x + c$

Answer: D

View Text Solution

18. If $2 \sec 2a = \tan b + \cot b$ then one of the

values of $(\alpha + \beta) =$

Α. π

B.
$$\frac{\pi}{2}$$

C. $\frac{\pi}{4}$

D. None of these

Answer: C

View Text Solution

19. Number of real root (s) of equation x^2 and x=1 betwwen $-rac{3\pi}{2}$ and $rac{\pi}{2}$ is

A. 1

B. 2

C. 3

D. 4

Answer: C

View Text Solution

20. The number of solution of the equation $2 an^{-1} x + \cot^{-1} x = rac{7\pi}{6}$ is

A. 0

B.1

C. 2

D. 3

Answer: A

View Text Solution

21. Let A be the matrix of order 3 imes 3 such that $\det(A)=2, B=2A^{-1}$ and $C=rac{(adjA)}{\sqrt[3]{16}}$,

then $\det(A^3B^2C^3) =$

22. Suppose

$$f(x) = egin{cases} x^3 - x^2 + 10x - 5 & x \leq 1 \ -2x + \log_2ig(b^2 - 2ig) & x > 1 \end{cases}$$

If f(x) attain highest value at x=1,

for
$$b^2\in (2,\lambda)$$
 then $\displaystylerac{\lambda}{65}$ is

23. If
$$f(x) = (\log_{\cot x} \tan x)$$

 $\cdot (\log_{\tan x} \cot x)^{-1}$
 $+ \tan^{-1} \left(\frac{x}{\sqrt{4-x^2}}\right), x \in (-2, 2)$ the the
value of $f'(0) =$
View Text Solution
24. The value of $\int_0^{\pi/2} \frac{\cos 3x + 1}{2\cos x - 1} dx =$

25. The mean and variance of 7 observations are 8 and 16 respectively. If 5 of the observations are 2,4,10,12,14 and the remaining two observations are x and y then the value of xy is

26. Let
$$C_1$$
 and C_2 be two curves given by $C_1 : y = \log_e(x+e)$
 $C_2 : x = \log_e\Big(rac{1}{y}\Big).$

Find the area enclosed (in sq. units) by the

curves and the x-axis.

27. There are point P(p,q) on the graph of $f(x) = x^2$ nad a point Q(r,s) on the graph of $g(x) = -\frac{8}{x}$ where p > 0 and r > 0. If the line through P and Q is also tangen to both the curves at these points respectively, then the sum of abscissa of P and Q is

28. Let $f\colon R o R$ to be a polynomial function satisfying the equation f(f(x)-2y)=2x-3y $+f(f(y)-x),\ orall x,y\in R$ then the value of f(9)-f(3) is equal to

View Text Solution

29. The number of values of x such hat the three terms $x, [x], \{x\}$ are in H.P Where [.],{.}

represents greatest integer function and

fractional part function respectively, is/are

lines	$rac{x+3}{-4} = rac{y-6}{3} = rac{z}{2}$	and
$\frac{x+2}{-4}$	$=rac{y}{1}=rac{z-7}{1}$ is	

