

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 47

Mathematics Single Choice

1. The number of distinct terms in the expansion of
$$\left(x^4+\frac{1}{x^4}+1\right)^{100}$$
 is

A. 101

B. 201

C. 401

D. 801

Answer: B

2. If the points z_1, z_2 lie on the curves [z] = 2 and [z] = 3 respectively and the angle between the vectors representing z_1, z_2 is 60° , then $\left|\frac{z_1+z_2}{z_1-z_2}\right|$ is equal to

A.
$$\sqrt{\frac{19}{7}}$$

 $\mathrm{B.}\,\sqrt{19}$

 $\mathsf{C.}\,\sqrt{7}$

D. $\sqrt{133}$

Answer: A

View Text Solution

3. If the system of equations

$$\lambda x + 2y + 3z = x$$

$$\lambda y - 2z = y$$

have a non zero solution, then sum of all possible values of λ is

- A. 2
- B.-5
- C. 6
- D. 8

Answer: C

- **4.** A determinant of second order is made with elements 0 and 1. The probability that the determinant made is non-negative is equal to
 - A. $\frac{11}{16}$
 - B. $\frac{13}{16}$
 - C. $\frac{9}{16}$

D.
$$\frac{7}{16}$$

Answer: B

View Text Solution

5. If all the equations

$$x^{2} + (2a + 3b)x + 60 = 0, x^{2} + ax + 10 = 0 \text{ and } x^{2} + bx + 8 = 0$$

where $a,b\in R$, have a common root, then value of |a-b| is

- A. 0
- B. 1
- C. 2
- D. None of these

Answer: B

6. If $S_1, S_2, S_3, \ldots S_n$ are the sum of infinite geometric series whose

first terms are $1, 3, 5, \ldots, (2n-1)$ and whose common ratios are

first terms are
$$1,3,5,.....$$
, $(2n-1)$ and whose common ratios are $\frac{2}{3},\frac{2}{5},.....$, $\frac{2}{2n+1}$ respectively, then

$$rac{1}{3},rac{1}{5},.....$$
 , $rac{2n+1}{2n+1}$ respectively, then $\left\{rac{1}{S_1S_2S_3}+rac{1}{S_2S_3S_4}+rac{1}{S_3S_4S_5}+.....$. upto infinite terms $brace$

A.
$$\frac{1}{15}$$
B. $\frac{1}{60}$

C. $\frac{1}{12}$ D. none of these

Answer: B

View Text Solution

7. If R and S are two symmetric relations (not disjoint) on a set A, then the relation $R \cap S$ is

A. reflexive

B. symmetric

C. transitive

D. None of these

Answer: B

View Text Solution

8. The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is

A.
$$x^2 + y^2 = 9a^2$$

B.
$$x^2 + y^2 = 16a^2$$

C.
$$x^2 + y^2 = 4a^2$$

D.
$$x^2 + y^2 = a^2$$

Answer: C

9. If equation of hyperbola touching x-axis and lines x-2y=0, x+y+1=0 as its asymptotes is $\alpha(x-2y)(x+y+1)+\beta=0(\alpha,\beta\in N$ and their HCF is 1), then value of $\alpha-\beta$ is

- A. 1
- B. 2
- C. 3
- D. 4

Answer: C

View Text Solution

10. Consider a parabola $y^2=4ax$, if the normal to the parabola at the point $\left(at^2,2at\right)$ cuts the parabola again at $\left(aT^2,2aT\right)$, then

A.
$$T^2 \geq 8$$

B.
$$T^2 \leq 6$$

C.
$$T\in (\,-\infty,\,-8)\cup (8,\infty)$$

D. None of these

Answer: A

View Text Solution

11. A point O is inside an equilateral triangle, if the distance of O from the sides are $\sqrt{12}$, $\sqrt{27}$ and $\sqrt{48}$, then the length of the side of the triangle, is

- A. $10\sqrt{3}$
 - B. $15\sqrt{3}$
 - C. 18
 - D. 20

Answer: C

12. The equation of the plane passing through the line of intersection of the planes x+y+z=5 and 2x+3y+4z+5=0 and perpendicular to the plane x+y+z=5 is

A.
$$x - z = 10$$

$$\mathsf{B.}\,x-z=20$$

C.
$$x + y - 2z = 10$$

D.
$$x + y - 2z = 20$$

Answer: B

13. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , and \overrightarrow{c} are unit vectors such that $\overrightarrow{a}+2\overrightarrow{b}+2\overrightarrow{c}=\overrightarrow{0}$, then $|\overrightarrow{a}\times\overrightarrow{c}|$ is equal to :

A.
$$\frac{1}{4}$$

B.
$$\frac{\sqrt{15}}{16}$$

c.
$$\frac{15}{16}$$

D.
$$\frac{\sqrt{15}}{4}$$

Answer: D

View Text Solution

$$\textbf{14. Let } g(x) = \begin{cases} \frac{ax^2 + bx + c\left(\cot x\right)^n}{4 + \left(\cot x\right)^n} &, & x \in \left(0, \frac{\pi}{4}\right) \\ 1 &, & \text{at} \quad x = \frac{\pi}{4} \\ \frac{\sin x + \cos x + \left(\tan x\right)^n}{1 + c\left(\tan x\right)^n} &, & x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right) \end{cases}$$

where a, b, care real constants and $f(x)=\lim_{n o\infty}\ g(x)$ If $\lim_{x o rac{\pi}{4}}\$ f(x) exist

then c may be equal to

B.
$$\frac{1}{2}$$

Answer: D

View Text Solution

- **15.** Given $f(x)=\left\{egin{array}{ll} \sqrt{10-x^2} & ext{if} & -3 < x < 3 \\ 2-e^{x-3} & ext{if} & x \geq 3 \end{array}
 ight.$ The graph of f(x) is -
 - A. continuous and differentiable at x = 3
 - B. continuous but not differentiable at x = 3
 - C. differentiable but not continuous at x = 3
 - D. neither differentiable nor continuous at x = 3

Answer: B

View Text Solution

16. Solution of differential equation $\frac{dy}{dx} = \sin x + 2x$, is

$$A. y = x^2 - \cos x + c$$

 $B. y = \cos x + x^2 + c$

$$\mathsf{C.}\, y = \cos x + 2$$

$$\mathsf{D}.\,y = \cos x + 2 + c$$

Answer: A

View Text Solution

17. If
$$\int \!\! rac{1}{1+\sin x} dx = an\! \left(rac{x}{2}+a
ight) + b$$
 then

A.
$$a=-rac{\pi}{4},b\in R$$

B.
$$a=rac{\pi}{4}, b\in R$$

C.
$$a=rac{5\pi}{4},b\in R$$

D. None of these

Answer: A

18. Each side of an equilateral triangle subtends an angle of 60° at the top a tower h meter high located at the centre of the triangle. If a is the length of each side of the triangle, then

A.
$$3a^2=2h^2$$

$$\mathsf{B.}\, 2a^2 = 3h^2$$

$$\mathsf{C.}\,a^2=3h^2$$

D.
$$3a^2=h^2$$

Answer: B

View Text Solution

19. If $\frac{x^2}{f(4a)}+\frac{y^2}{f(a^2-5)}$ represents an ellipse with major axis as y-axis and f is a decreasing function, then:

A.
$$a\in (-\infty,1)$$

B.
$$a\in (5,\infty)$$

$$\mathsf{C}.\, a \in (1,4)$$

D.
$$a \in (-1, 5)$$

Answer: D

View Text Solution

20.
$$\displaystyle \sum_{m=1}^n an^{-1} igg(rac{2m}{m^4+m^2+2} igg)$$
 is equal to

A.
$$\tan^{-1}\!\left(\frac{n^2+n}{n^2+n+2}\right)$$

$$\mathsf{B.}\tan^{-1}\!\left(\frac{n^2-n}{n^2-n+2}\right)$$

C.
$$\tan^{-1}\left(\frac{n^2+n+2}{n^2+n}\right)$$

D. None of these

Answer: A

Mathematics Subjective Numerical

1. Let $D_1=egin{array}{c|ccc} x&a&b\\-1&0&x\\x&2&1 \end{array}$ and $D_2=egin{array}{c|ccc} cx^2&2a&-b\\x&2&1\\-1&0&x \end{array}$. If all the roots of the equation $(x^2-4x-10)(x^2-5x+3)=0$ also satisfy the

to the curve $y=e^x+e^{x^2}+e^{x^3}+\ldots \ +e^{x^n}, n\in N$ at x=1, is

2. The value of n, if $y-b=45e^x+c$ represent the equation of tangent

3. If $\frac{1}{2}f(x+y)=f(x)f(y), f'(5)=1024\log 2, f(2)=8 \,\, ext{and} \,\, f'(3)=\log 2^n$, then the value of a = _____

4. Let F be a positive function and let

$$A=\int_{rac{\pi}{2}-a^2-a-1}^{a^2+a+1}\sin^2x Fig(\sin^2x\cos^2xig)dx,$$
 $B=\int_{rac{\pi}{2}-a^2-a-1}^{a^2+a+1}Fig(\sin^2x\cos^2xig)$ where $a\in R$, then $rac{B}{A}=$

5. Given that $4\cos x\cos y=1$ and $\sin^2 x+\sin^2 y\geq \frac{3}{2}.$ Evaluate $\tan^2 x+\tan^2 y$

6. At an election, a voter may vote for any number of candidates, not more than the number to be elected. There are 10 candidates and 4 are to be elected. If a voter can vote for at least one candidate, then the number of ways in which he can vote is _____

7. If
$$fx\sqrt{rac{2\sin(x^2+1)-\sin2(x^2+1)}{2\sin(x^2+1)+\sin2(x^2+1)}}dx = \log fig(mig(x^2+1ig)ig) + c$$

then evaluate $\left[f\left(\frac{m\pi}{2}\right)\right]$, where [] represents the greatest integer function.

View Text Solution

8. If the coefficient of first three terms in the binomial expansion of $\left(x^{rac{1}{2}}+rac{1}{2x^{rac{1}{4}}}
ight)^n$ arrange in descending power of u are in arithmetic progression, then the number of terms in the expansion, having integral powers of x are

- **9.** A cricket player played n(n>1) matches during his career and made a total of $rac{(n+1)\left(2^{n+1}-n-2
 ight)}{4}$ runs. If the player made k. 2^{n-k+1} runs
- in the k^{th} match, then the value of n is $(1 \le k \le n)$

10. If the angle between the tangents at (1,0) and (6,0) to the curve

$$y=x^2-7x+6$$
 is $an^{-1}\Bigl(rac{m}{n}\Bigr)$, then $||\mathsf{n}|$ - $|\mathsf{m}||$ =.

(Given that G.C.D.of (m, n) = 1)

