

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 48

Mathematics

1. The sum of rational terms in the binomial expansion of $\left(\sqrt{2}+\sqrt[5]{3}
ight)^{10}$ is

A. 32

B. 41

C. 25

D. None of these

Answer: B

Non Tark Calintan

2. If
$$z=rac{3}{2+\cos heta+i\sin heta}, ext{ then locus of z is :}$$

- A. a straight line
- B. a circle having centre on x-axis
- C. a circle having centre on y-axis
- D. a parabola

Answer: B

$$egin{array}{c|cccc} 3. & 5^{\sqrt{\log_5 3}} & 5^{\sqrt{\log_5 3}} & 5^{\sqrt{\log_5 3}} \ 3^{-\log_{1/3}}(4) & (0.1)^{\log_{0.01}}(4) & 7^{\log_7}(3) \ 7 & 3 & 5 \ \end{array}
ight| ext{is}$$

- A. 0
- B. $5\sqrt{\log_5 3}$

C. $2.5\sqrt{\log_5 3}$

D. None of these

Answer: A

View Text Solution

- **4.** The variance of first five prime numbers is
 - A. 10
 - B. 3.2
 - C. 10.24
 - D. None of these

Answer: C

5. If $x^2-2x+2\sin\alpha=0$ has unique root in (-1,1), then length of largest continuous interval of α in $[0,2\pi]$ is

6. If $x^2+y^2+z^2=1$, where $x,y,z\in R^+,$ then greatest value of

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{3}$$
C. $\frac{5\pi}{6}$

D.
$$\frac{7\pi}{6}$$

Answer: D

$$\Delta = \frac{2^5}{}$$

 $x^2y^2z^4$ is

A.
$$\dfrac{2^5}{3^{\frac{15}{2}}}$$
 B. $\dfrac{2^{10}}{3^{15}}$

C.
$$\frac{2^{10}}{3^{\frac{9}{3}}}$$

D. $\frac{2^{15}}{3^9}$

Answer: A

View Text Solution

7. If $A = \left\{ heta \colon 2\cos^2 \theta + \sin \theta \le 2
ight\}$ and

$$B=\left\{ heta\colon rac{\pi}{2}\leq heta\leq rac{3\pi}{2}
ight\}$$
 . Then , $A\cap B$ is equal to

- A. $\{ heta\!:\!\pi/2\leq heta\leq5\pi/6\}$
- B. $\{ heta\!:\!\pi\leq heta\leq3\pi/2\}$
- C. $\{ heta\!:\!\pi/2\leq heta\leq5\pi/6\}\cup\{ heta\!:\!\pi\leq heta\leq3\pi/2\}$
- D. None of the above

Answer: C

8. From a point
$$(h,0)$$
 common tangent s are drawn to circles

$$x^2 + y^2 = 1 \, ext{ and } \, (x-2)^2 + y^2 = 4, \, ext{value of h is}$$

- A. 2
- B.-2
- $\mathsf{C.}-\frac{2}{3}$

D. $\frac{2}{3}$

Answer: B

- **9.** P (6,3) is a point on the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$. If the normal at point P intersect the x-axis at (10,0) , then the eccentricity of the hyperbola is
 - A. $\sqrt{\frac{5}{3}}$ B. $\frac{\sqrt{15}}{2}$

C.
$$\sqrt{\frac{5}{2}}$$
D. $\frac{\sqrt{13}}{2}$

Answer: A

View Text Solution

10. The coordinates of the point on the parabola $y^2=8x,\,$ which is at minimum distance from circle $x^2 + \left(y-6
ight)^2 = 1$ are

D.
$$(4, 2)$$

Answer: C

11. The angle between the tangents to the curve $y=x^2-5x+6$ at points (2,0) and (3,0) is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{2}$$

Answer: D

View Text Solution

12. If a plane passes through the point (1,1,1) and is perpendicular to the line $\frac{x-1}{3}=\frac{y-1}{0}=\frac{z-1}{4},$ then its perpendicular distance from the origin is -

A.
$$\frac{3}{4}$$

B.
$$\frac{4}{3}$$

c.
$$\frac{7}{5}$$

D. 1

Answer: C

View Text Solution

If $\overrightarrow{r} = \hat{i} + \hat{j} + \hat{k} ext{ and } \overrightarrow{r}_1 \Big(a \hat{i} + b \hat{j} + c \hat{k} \Big)$ 13. where $a,b,c \in \{\,-\,3,\,\,-\,2,\,\,-\,1,\,0,\,1,\,2,\,3,\,4\},$ then number of possible nonzero vector \overrightarrow{r}_1 perpendicular to \overrightarrow{r} is

B. 55

C. 46

D. none of these

Answer: A

14. Let $f\colon R o R$ be a differentiable function such that

$$f(1) = 1, f(2) = 20, f(-4), \text{ and } f'(0) = 0$$

$$f(x+y) = f(x) + f(y)$$

$$+3xy(x+y) + bxy + c(x+y)$$

$$+4\,orall x,y\in R$$

where b, c are constants, then number of solutions of the equation

$$f(x) = x^3 + 4e^x$$
 is equal to

A. 0

B. 1

C. 2

D. 3

Answer: B

15. If $f(x) = \max \{ \sin x, \sin^{-1}(\cos x) \}$, then

A. f is differentiable everywhere

B. f is continuous everywhere but not differentiable

C. f is discontinuous at $x=rac{n\pi}{2}, n\in I$

D. f is non-differentiable at $x=rac{n\pi}{2}, n\in I$

Answer: B

View Text Solution

16. Let y=f(x) be function satisfying the differential equation

 $x\frac{dy}{dx}+2y=4x^2 \text{ and } f(1)=1 \text{ then } f(-3) \text{ is equal to}$

A. 9

B.-3

C. 0

Answer: A

View Text Solution

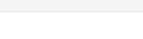
- 17. If $\int \!\! rac{2\cos x + 3\sin x}{3\cos x + 4\sin x} dx = Ax + B\ln \lvert 3\cos x + 4\sin x \rvert + C$ then (A
- +B) is equal to
 - A. $\frac{18}{25}$
 - $\mathsf{B.}\;\frac{19}{25}$
 - $\mathsf{C.}\ \frac{17}{25}$
 - D. $\frac{4}{5}$

Answer: C

18. A ladder rests against a wall at an acute angle α to the horizontal. Its foot is pulled away form the wall through a distance 2 m, so that it slides a distance 3 m down the wall making an acute angle β with the horizontal , then the value of $\tan\left(\frac{\alpha+\beta}{2}\right)$ is

- A. $\frac{3}{2}$
- $\mathsf{B.}\;\frac{2}{3}$
- c. $\frac{4}{9}$
- D. $\frac{9}{4}$

Answer: B


- **19.** If latus rectum of the ellipse $x^2 \tan^2 \alpha + y^2 \sec^2 \alpha = 1$ is $\frac{1}{2}$, where $0<\alpha<\pi$ ten eccentricity 'e' can be
 - A. $\frac{\sqrt{3}+1}{2\sqrt{2}}$

then the value of
$$(100)+g(8)$$
 is

D. none of these

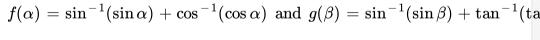
 $\text{B.} \ \frac{\sqrt{3}}{2\sqrt{2}}$ $\text{C.} \ \frac{1}{2\sqrt{2}}$

A. 0

B. 8

C. 100

D. 108



Answer: A

21. Let p be a matrix of order 3×3 such that all the entries in p are form the set $\{-1,0,1\}$. Then, the maximum possible value of the determinant of p is

22. Find the value of $f^2(4)+g^2(4), \quad ext{if} \quad f'(x)=g(x) \ ext{and} \ g'(x)=-f(x)$ for all

x and ff(2) = 4 = f'(2).

23. The value of integral part of

$$\int_0^2 ig[x^2 - x + 1 ig] dx$$
 is : (where [.] denotes greatest integer function)

 $2\sin=x^2=x\pi+rac{\pi^2+8}{4}$ have ?

24.

25. Let f(x) be a function continuous for all except at x = 0 such that

How many real solutions does

the

equation

then

$$f'(x) > 0 \, \forall x > 0 \text{ and } f'(x) < 0 \, \forall x < 0.$$

 $egin{aligned} & \lim_{x o 0^+} f(x) = 10, \ \lim_{x o 0^-} f(x) = 15 \ ext{and} \ f(0) = 12, \ & \lim_{x o 0} f(x^3 - x^2) \ & \lim_{x o 0} f(2x^4 - x^5) + rac{\lim_{x o 0} \left[f(x^3 - x^2)
ight]}{\lim_{x o 0} \left[f(2x^4 - x^5)
ight]} = \end{aligned}$

26. Let $f\colon R\to R,\,y=f(x)$ be a differentible function satisfying the equation $\frac{dy}{dx}=(2+5y)(5y-2)\,\text{ and }\,f(0)=0,$ then $\lim_{x\to -\infty}f(x)=......$

27. Let the set S_n is defined as follows

$$S_1 = \{1\}, S_2 = \{2, 3, 4\},$$

 $S_3=\{5,6,7,8,9\}....$, for each positive integer n. If the sum of all the integers in set S_n is equal to 1729, then the number of elements in set S_n is equal to

28. If
$$\frac{d}{dx} \left(\frac{1 + x^4 + x^8}{1 + x^2 + x^4} \right) = ax^3 + bx$$
, then find the value of a + b.

29. Let y be the product of all the divisors of the number 720. If y is divisible by 15^p , then maximum value of $\left(\frac{p}{3}\right)$ equals

