©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 52

Mathematics

1. If coefficient of x^{101} in
$1+(1+x)+(1+x)^{2}+\ldots$ (if $+(1+x)^{n}$
($n \geq 100$) is ${ }^{201} C_{101}$ then value of n equals
A. 202
B. 100
C. 200

Answer: C

D View Text Solution

2. If z is a coplex number satisfying equation $|z+i|+|z-i|=8$ on the complex plane then maximum value of $|z|$ is
A. 2
B. 4
C. 6
D. 8

Answer: B

3. | 3 |
| :--- |
| 7 |

$\mid 5 \sqrt{\log _{5} 3} \quad 5 \sqrt{\log _{5} 3} \quad 5 \sqrt{\log _{5} 3}$
$3^{-\log _{1 / 3}(4)}$
7
$(0$
3
$7^{\text {l }}$
5 is
A. 0
B. $5 \sqrt{\log _{5} 3}$
C. $2.5^{\sqrt{\log _{5} 3}}$
D. None of these

Answer: A

D View Text Solution

4. If e^{A} is difined as

$$
\begin{aligned}
& e^{A}=I+A+\frac{A^{2}}{2!}+\ldots . \text { where } \\
& =\frac{1}{2}\left[\begin{array}{ll}
f(x) & g(x) \\
g(x) & f(x)
\end{array}\right]
\end{aligned}
$$

$A=\left[\begin{array}{ll}x & x \\ x & x\end{array}\right]$ and $0<x<1$ is an identity matrix. Then $\int_{0}^{1} \frac{g(x)}{f(x)} d x$ is equal
A. $\ln \left(\frac{e+e^{-1}}{2}\right)$
B. $\ln \left(e+e^{-1}\right)$
C. $\ln \left(e^{2}+1\right)-\ln 2$
D. None of these

Answer: A

D View Text Solution

5. Let $f(x)=\left(a^{2}+a+2\right) x^{2}-(a+4) x-7, x \in R$.

If 1 lies between the roots f equation $f(x)=0$ then number of integral values of a is/are
A. 5
B. 4
C. 3
D. 2

Answer: A

- View Text Solution

6. Let $S_{n}=1^{3}+2^{3}+3^{3}+\ldots .+n^{3}, n \in N$, then $64 S_{n}$ is always less than
A. $(2 n-1)^{4}$
B. $(n+2)^{4}$
C. $(2 n+1)^{4}$
D. $2(n+1)^{4}$

Answer: C

D View Text Solution

7. In the letters of the word "INDEPENDENCE" are rearranged randomly, then the probability that no two E's occur together is
A. $\frac{14}{55}$
B. $\frac{1}{55}$
C. $\frac{54}{55}$
D. None of these

Answer: A

D View Text Solution

8. The vertices of a $\triangle A B C$ lie on a rectangular hyperbola such that the orthocentre of the triangle is $(3,2)$ and the asymptotes of the rectangular hyperbola are parallel to corrdinate axes. If the two perpendicular tangents of the hyperbola intersect at $(1,1)$, then equation of the rectangular hyperbola is
A. $x y=2 x+y-2$
B. $2 x y=x+2 y+5$
C. $x y+1=x+y$
D. $x y+1=x+y$

Answer: D

9. If a double ordinate of the parabola $y^{2}=4 a x$ is of length 8 a , then the triangle formed by double ordinate and line joining vertex with end points of double ordinate is a
A. equilateral triangle
B. isosceles triangle
C. right angled triangle
D. None of these

Answer: C

D View Text Solution

10. If P, Q and R are three points with the co-ordinates $(1,4),(4,2)$ and ($m, 2 m-1$) respectively then the value of m for which $P R+R Q$ is minimum will be equal to
A. $\frac{17}{8}$
B. $\frac{5}{2}$
C. $\frac{7}{2}$
D. $\frac{15}{8}$

Answer: A

D View Text Solution

11. The equation of the plane passing through the line of intersection of the planes $x+2 y=3$ and $y-2 z+1=0$ and perpendicular to the first plane is
A. $2 x-y-10 z=9$
B. $2 x-y-9 z=10$
C. $2 x-y+10 z=11$
D. $2 x-y+7 z=11$

Answer: C

D View Text Solution

12. Let $A B C$ be a triangle with vertices at points $A(2,3,5), B(-1,3$, and $C(\lambda, 5, \mu)$ in three dimensional space. If the median through

A is equally inclined with the axes, then (λ, μ) is equal to :
A. $(10,7)$
B. $(7,5)$
C. $(7,10)$
D. $(5,7)$

Answer: C

13. $\int \frac{1}{f(x)} d x=\log (f(x))^{2}+C$, then $\mathrm{f}(\mathrm{x})$ is
A. $x+\alpha$
B. $2 x+\alpha$
C. $\frac{x}{2}+\alpha$
D. $x^{2}+\alpha$

Answer: C

- View Text Solution

14. If $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x+2}-a x-b\right)=2$,
then equation of circle whose centre is $(a, 2 b)$ and radius 1 unit is

$$
\text { A. } x^{2}+y^{2}+2 x+6 y+9=0
$$

B. $x^{2}+y^{2}-2 x+6 y+1=0$
C. $x^{2}+y^{2}-2 x+6 y+9=0$
D. None of these

Answer: C

- View Text Solution

15. The sum of 50 observations and sum of their squares were found to be 245 and 1401 respectively, but later on, three observations 2,3 and 5 were found to be not correct. If the incorrect observations are removed, then vartiance of remaining observations is
A. 4.25
B. 4.00
C. 3.15
D. 3.00

Answer: B

D View Text Solution

16. $\int \frac{d x}{\sqrt[5]{(x+1)^{\frac{11}{2}}(x+2)^{\frac{9}{2}}}}$ is equal to
A. $10\left(\frac{x+2}{x+1}\right)^{\frac{1}{10}}+C$
B. $-10\left(\frac{x+2}{x+1}\right)^{\frac{1}{10}}+C$
C. $10\left(\frac{x+1}{x+2}\right)^{\frac{1}{10}}+C$
D. $-10\left(\frac{x+1}{x+2}\right)^{\frac{1}{10}}+C$

Answer: B
17. The contrapositive of the statement : If $x=5$ and $y=-2$ then $x-2 y=9$ is
A. If $x-2 y=9$ then $x=5$ and $y=-2$
B. If $x-2 y \neq 9$ then $x \neq 5$ and $y \neq-2$
C. If $x-2 y \neq 9$ then $x \neq 5$ or $y \neq-2$
D. If $x-2 y \neq 9$ then either $x \neq 5$ or $y=-2$

Answer: C

D View Text Solution

18. If in $\triangle A B C, \sin B \cos C=\frac{\sqrt{3}-1}{\sqrt{3}}$ and $\cos B \sin C=\frac{1}{\sqrt{3}}$, then the triangle is
A. isosceles
B. equilateral
C. right angled triangle
D. right angled isosceles

Answer: C

D View Text Solution

19. If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\pi$, then the value of $\frac{x y \sqrt{1-z^{2}}+y z \sqrt{1-x^{2}} z x \sqrt{1-y^{2}}}{\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)\left(1-z^{2}\right)}}$ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: B

D View Text Solution

20. If m be the number of direct common tangents to the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-8 x-8 y+7=0$, then the value of $\frac{1}{m}$ is

- View Text Solution

21. $f(x)= \begin{cases}\left(\sqrt{2}+\frac{\sin (1)}{x}\right)^{\frac{-1}{|x|}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

Let $n_{1}=$ number of points where $\mathrm{f}(\mathrm{x})$ has local extreme when
$x \neq 0$,
$n_{2}=$ the vale of global minimum of $f(x)$.
then value of $\left(n_{1}+n_{2}\right)$ is
22. Graphical representation of different functions is also a method of find the number of solution (s) of any equation. The number of solution of the equation $f_{1}(x)=f_{2}(x)$ is equal to the number of points of intersection of the graphs of $y=f_{1}(c)$ and $y=f_{2}(x)$. Now consider the equation $|x-1+|x-2|+|x-3|=k$. If $k>2$, then the number of solutions of the given equation is/are

D View Text Solution

23. Consider the differential equation $\frac{d u}{d t}=\sin (t+u)+\cos (t+u)$. The general solution of the equation is $\log (\mathrm{t}, \mathrm{u})=\mathrm{t}+\mathrm{c}$.

The value of $\left[f\left(0, \frac{2 \pi}{3}\right)\right]$, where [.]
represents the greatest integer function, is equal to

D View Text Solution

24. For a positive interger n ,
$f_{n}(x)=\tan \left(\frac{x}{2}\right)(1+\sec x)(1+\sec 2 x)(1+\sec 4 x) \ldots\left(1+\sec 2^{n} x\right)$
then the value of
$f_{2}\left(\frac{\pi}{16}\right)+f_{3}\left(\frac{\pi}{32}\right)+f_{4}\left(\frac{\pi}{64}\right)$ is equal to

D View Text Solution

 that f is discontinuous at n , where n be an integral value of x is
$\lim _{x \rightarrow n^{-}} f(x)=p, \lim _{x \rightarrow n^{+}} f(x)=q$ and $\lim _{x \rightarrow \frac{3}{2}} f(x)=m, \quad$ then the value of $(p-q) m$ is equal to
26. The curve $y=a x^{2}+b x+c$ passes through the point $(1,2)$ and normal at the origin is the line $y=-x$. The area bounded by the curved, the tangent the origin and the line $x+1=0$ is A sq. units.

Then the valueof 18 A is equal to

D View Text Solution

27.

Define
$a_{k}=\left(k^{2}+1\right) k!$ and $b_{k}=a_{1}+a_{2}+a_{3}+\ldots \ldots \ldots+a_{k}$
Let $\frac{a_{100}}{b_{100}}=\frac{m}{n}$ where m and n are relatively prime numbers. Then the value of $(n-m)$ is :

D View Text Solution

28. The first to two samples has 100 items with mean 15 and standard deviation 3 if the whole group has 150 items with mean

16 and $. S . D=\sqrt{8.75}$. The value of S. D. of the second group is equal to

- View Text Solution

