

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 54

Mathematics

1. If
$$z=x+iy$$
 and $w=rac{(i-iz)}{(z-i)}$ then

|w|=1, show that in complex plane

A. z is situated on imaginary axis

B. z is situated on real axis

C. z is situated on unit circle

D. None of these

Answer: B

2. let A be a matrix of order 3×3 and matrices

B,C and D are related such that

B=adj(A)C=adj(adj), D if

$$= (adj(adj(adjA)))$$

|adj(adj(adj(adjABCD)))| is $|A|^k$, then k

- A. is less than 256
- B. has 21 divisors
- C. cannot say
- D. is an odd number

Answer: A

3. If L: ax + by + c = 0 is a variable straight line where a,b and c are second, fourth and seventh term of an A.P respectively, then L passes thorugh the fixed point

A.
$$\left(-rac{3}{2},rac{5}{2}
ight)$$

$$\mathsf{B.}\left(\frac{3}{2},\,-\frac{5}{2}\right)$$

$$\mathsf{C.}\left(\frac{3}{2},\,\frac{5}{2}\right)$$

$$\mathsf{D.}\left(-\frac{3}{2},\,-\frac{5}{2}\right)$$

Answer: B

VIEW TEXT POLITICITY

4. Which of the following functions is NOT one -one?

A.
$$f\!:\!R o F, f(x)=6x-1$$

B.
$$f\!:\!R o R, f(x)=x^2+7$$

$$\mathsf{C}.\,f\!:\!R o R,f(x)=x^3$$

D.
$$f\!:\!R-\{7\} o R, f(x)=rac{2x+1}{x-7}$$

Answer: B

5. Tangents drawn from the point (4,4) to the circle

 $x^2+y^2-2x-2y-7=0\,$ meets the circle at A andB then the length of chord AB is equal to

A.
$$2\sqrt{3}$$

$$\mathsf{B.}\,3\sqrt{2}$$

C.
$$4\sqrt{3}$$

D.
$$2\sqrt{6}$$

Answer: B

View Text Solution

6. Let $p(3\sec \alpha, 2\tan \alpha)$ and

 $Q(3\seceta, 2 aneta)$ be two points on

hyperbola $H_1\colon rac{x^2}{9} - rac{y^2}{4} = 1$ such that

 $\alpha-\beta=rac{2\pi}{3}.$ If PQ is tangent to hyperbola

 $H_2\colon rac{x^2}{a^2}-rac{y^2}{b^2}=1$, the ecentricity of

hyperbola H_2 is

A.
$$\frac{\sqrt{10}}{3}$$

B.
$$\frac{2}{\sqrt{3}}$$

c.
$$\frac{\sqrt{13}}{3}$$

D.
$$\frac{\sqrt{5}}{\sqrt{3}}$$

Answer: A

View Text Solution

7. Three numbers are chosen at random from 1 to 15. The probability that no two numbers are consecutive is

A.
$$\frac{11}{32}$$

B.
$$\frac{44}{91}$$

c.
$$\frac{33}{64}$$

D.
$$\frac{22}{35}$$

Answer: D

8. If point (0,a) lies inside the triangle formed by the lines
$$y+3x+2=0, 3y-2x-5=0$$

and 4y + x - 14 = 0, then the number of possible integral values of a is

- A. 4
- B. 3
- C. 2
- D. 1

Answer: C

9. If the ellipse $\frac{x^2}{16}+\frac{y^2}{b^2}=1, b>0$ and the hyperbola $\frac{x^2}{81}-\frac{y^2}{63}=\frac{1}{16}$ intersect orthogonally, then the value of b^2 is

- A. 5
- B. 7
- C. 9
- D. $\frac{81}{7}$

Answer: B

10. If $\overset{
ightarrow}{A}=\hat{i}+\hat{j}+\hat{k}, \overset{
ightarrow}{B}=4\hat{i}+3\hat{j}+4\hat{k}$ and

$$\overrightarrow{C}=\hat{i}+lpha\hat{j}+eta\hat{k}$$
 are linearly dependent vector and $\left|\overrightarrow{C}
ight|=\sqrt{3}$, then

A.
$$\alpha = 1, \beta = -1$$

B.
$$\alpha = 1, \beta = \pm 1$$

$$\mathsf{C}.\,\alpha = -1, \beta = \pm 1$$

D.
$$\alpha = \pm 1, \beta = 1$$

Answer: D

11. If
$$y = \log\{\log_2(x)\}$$
, then $\frac{dy}{dx}$ is

A.
$$\frac{\log_2 e}{xInx}$$

$$B. \frac{2.3026}{xInx2}$$

C.
$$\frac{1}{In(2x)^x}$$

D. None of these

Answer: A

 $1 - \frac{\cos^3 x}{\cos^3 x}$ is **12.** The value of \lim $\stackrel{\longrightarrow}{x} \rightarrow 0 \quad \sin x \cos x$

A.
$$\frac{2}{5}$$

$$\mathsf{B.}\;\frac{3}{5}$$

$$\mathsf{C.}\,\frac{3}{2}$$

D.
$$\frac{3}{4}$$

Answer: C

13. If
$$P=\int_1^2 \left(rac{\sqrt{x^2+1}+x-1}{\sqrt{x^2+1}+x+1}
ight)\!dx$$
 and

$$Q=\int_{1}^{2} \left(rac{x}{\sqrt{x^{2}+1+1}}
ight)\!dx$$
 then $rac{P}{Q}$ is

A.
$$In rac{2}{5}$$

equal

B.
$$\frac{2}{3}$$

c.
$$\frac{1}{2}$$

D. 1

Answer: D

14. If y=f(x) is passing through (1,2) satisfied the differential equation y(1+xy)dx-xdy=0, then f(2) equals

$$A.-2$$

$$\mathsf{B.}\;\frac{3}{5}$$

c.
$$\frac{-8}{7}$$

D. not defined

Answer: A

15. The value of the integral $\int \frac{\sec x}{\sin x + \cos x} dx$

A.
$$In|1 + \tan x| + C$$

B.
$$In |\tan x| + C$$

$$\mathsf{C}.\tan^{-1}(1+\tan x)+C$$

D.
$$In|\sin x + \cos x|$$
. $\sec x + C$

Answer: A

16. One of the sides of a triangle is divided into segments of 4 and 6 units by the point of tangency of the inscribed circle which has radius $2\sqrt{2}$ units, then the largest side of triangle is

A. 10

B. $\frac{21}{2}$

 $\mathsf{C.}\ \frac{43}{4}$

D. 11

Answer: D

17. The number of positive integral values of a for which there is no solution of the equation

$$a\cos x + \cot x + 1 = \cos ecx$$
,

where

$$x
eq rac{n\pi}{2}, n\in Z$$
 is

A. 1

B. 2

C. 3

D. 4

Answer: D

View Text Solution

18. The complete solution set for $\sin^{-1}(x) = 3\sin^{-1}(a)$ is

$$\mathsf{A.}\, 0 \leq a \leq \frac{1}{2}$$

$$\mathsf{B.} - \frac{1}{2} \leq a \leq 0$$

$$\mathsf{C.} - \frac{1}{2} \leq a \leq \frac{1}{2}$$

D. None of these

Answer: C

View Text Solution

19. Which one of the following is a tautology?

A.
$$p \lor (q \land r) \Leftrightarrow (p \lor q) \lor (p \lor r)$$

B.
$$p \lor (q \land r)$$

C.
$$(p \lor q) \land (p \lor r)$$

$$\mathsf{D}.\, p \lor (q \land r) \Leftrightarrow (p \land q) \land (p \land r)$$

Answer: D

20. In the expansion of $\dfrac{1}{(1-x+x^2)^{30}}$, find the coefficien of x^6 where |x|<1.

21. If $M=\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ and $M^2-\lambda M-I_2=O$ then 2^λ must be

22. The number of five digit numbers that can be formed using all the digits 0,1,3,6,8, greater than 30,000 that are divisible by 11 is λ then find $\frac{\lambda^2}{7}$

View Text Solution

23. If the roots of the quadratic equation $(4p-p^2-5)x^2-(2p-1)x+3p=0$ lie on either side of unity, then the number of integral values of p is

24. If the line
$$\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$$
 and $\frac{x-2}{1}=\frac{y-k}{2}=\frac{z}{1}$ are coplanar, then k is equal to

$$f(x)=rac{rac{1+\cos x}{\left(\pi-x
ight)^2}.\;rac{\sin^2 x}{\log\left(1+\pi^2-2\pi x+x^2
ight)}}{k}\;\;x
eq\pi$$

f(x) is continuous function at $x = \pi$ then k is equal to

View Text Solution

26. The point nearest to the line x+y=7and lying onan ellipse $x^2+2y^2=6$, has co ordinate (h,k) The value of $\frac{k}{h}$ is

27. Let $f(x)=\min\left(x+1,\sqrt{1-x}
ight)$ for all $x\leq 1$. Then thrice of area (in square unit) bounded by y=f(x) and the x-axis is

View Text Solution

28. The number of positive real roots of equation

$$(x-1)(x-2)(x-3)$$

$$+(x-1)(x-2)(x-4)$$

$$+(x-2)(x-3)(x-4)$$

$$+(x-1)(x-3)(x-4)=0$$
 is

View Text Solution

29. Let $a_1, a_2, a_3, \ldots, a_{10}$ be in AP and $h_1,h_2,h_3,\ldots\ldots h_{10}$ be in HP. If $a_1 = h_1 = 2, a_{10} = h_{10} = 3$, the value of a_4h_7

