

India's Number 1 Education App

# **MATHS**

# **BOOKS - NTA MOCK TESTS**

# **NTA TPC JEE MAIN TEST 57**

# **Mathematics**

1.

$$\left(1+x+x^2
ight)^{25} = a_0 + a_1 x + a_2 x^2 + \ldots + a_{50} x^{50}$$

. If 
$$A=(a_3-a_5+a_7-a_9+\ldots\ldots-a_{49})$$
., then

find 
$$\frac{A}{8}$$
:-

B. 0

C. 3

D. 
$$\frac{3^{25}-1}{2}$$

## **Answer: C**



# **View Text Solution**

**2.** For  $lpha,eta,\gamma\in R,A=egin{bmatrix} lpha^2&6&8\ 3&eta^2&9\ 4&5&\gamma^2 \end{bmatrix}$  and

$$B=egin{bmatrix} 2lpha&3&5\ 2&2eta&6\ 1&4&2\gamma-3 \end{bmatrix}$$
 . If  ${
m tr}({
m A})$  =  ${
m tr}({
m B})$ , the value of

$$\left(\alpha^{-1}+\beta^{-1}+\gamma^{-1}\right)$$
 is (Where tr(X) = denotes trace of matrix X)

- A. 4
- B. 3
- C. 2
- D. 1

**Answer: B** 

# View Text Solution

**3.** Consider the system of equations  $2x+P^2y+6z=8, x+2y+2qz=5$  and

$$x + y + 3z = 4$$

A. Given system has unique solution for

$$P 
eq \pm \sqrt{2}$$
 and  $q = rac{3}{2}$ 

B. Given system has no solution for  $P=\pm\sqrt{2}$ 

and 
$$q=rac{3}{2}$$

C. Given system has infinite solution for

$$P=\ \pm \sqrt{2}$$
 and  $q\in R$ 

D. None of these

#### **Answer: C**



**4.** If  $\cot(\theta+\alpha), 3\cot\theta, \cot(\theta-\alpha)$  are in AP, then

value of  $\frac{\sin^2 \theta}{\sin^2 \alpha}$  , wherever defined, is

- A.  $\frac{3}{2}$
- B. 3
- $\mathsf{C.}\,\frac{2}{3}$
- D. 2

**Answer: A** 



**View Text Solution** 

5. Which of the following is an empty set?

A. The set of prime numbers which are even

B. The solution set of the equation

$$rac{2(2x+3)}{x+1} - rac{2}{x+1} + 3 = 0, x \in R$$

C.  $(A \times B) \cap (B \times A)$ , where A and B are disjoint.

D. The set of real which satisfy

$$x^2+ix+i-1=0$$

#### **Answer: C**



View Text Solution

**6.** There are two circles  $C_1$  and  $C_2$  whose radii are  $r_1, r_2$ , respectively. If distance between their centre is

 $3r_1-r_2$  and length of direct common tangent is twice of the length of transverse common tangent.

Then  $r_1:r_2$  is:

- A.5:4
- B.6:5
- C.7:6
  - D. 8:7

# **Answer: C**



**7.** For a parabola passing through (1,2), (2,1), (3,4) and (4,3), the equation of axis of the parabola is-

A. 
$$x - y + 3 = 0$$

$$B. x - y = 0$$

C. 
$$x + y - 1 = 0$$

D. line 
$$x + y = 0$$

# **Answer: B**



**8.** The four sides of a quadrilateral are given by the equation xy(x-2)(y-3)=0. The equation of the line parallel to x-4y=0 that divides the quadrilateral in two equal areas is:

A. 
$$x - 4y - 5 = 0$$

B. 
$$x - 4y + 5 = 0$$

C. 
$$x - 4y - 1 = 0$$

D. 
$$x - 4y + 1 = 0$$

#### **Answer: B**



**9.** Let S be the set of real values of A for which the function  $f(x)=x^3-3(2\lambda-1)x^2+6\lambda x$  has exactly one local maximum and exactly one local minimum, then S can be

- A. (0,6)
- B. (1,4)
- C.  $(-\infty,0)$
- $D.(0,\infty)$

#### **Answer: C**



# 10. The three planes:

$$4y + 6z = 5, 2x + 3y + 5z = 5$$

&

$$6x + 5y + 9z = 10$$

A. meet in a point

B. have a line in common

C. form a triangular prism

D. none of these

#### **Answer: B**



# 11. Solution set of equation:

$$\left|1-\log_{rac{1}{6}}x
ight|+\left|\log_{2}x
ight|+2=\left|3-\log_{rac{1}{6}}x+\log_{rac{1}{2}}x
ight|$$
 is

$$\left[\frac{a}{b},a\right],a,b\in N$$
, then the value of (a+b) is:

- A. 5
- B. 6
- **C**. 7
- D. 8

#### **Answer: C**



**12.** Value of  $(\lim)_{x o 1} (x)^{rac{1}{\ln x}}$  is:

A. 
$$\frac{1}{e}$$

B.  $e^2$ 

C. e

D. does not exist

## **Answer: C**



**View Text Solution** 

13. If area bounded by curve:

$$y=\left|\cos^{-1}(\sin x)
ight|+\left|rac{\pi}{2}-\cos^{-1}(\cos x)
ight|$$
 x-axis and

$$\dfrac{\pi}{2} \leq x \leq \pi$$
 Is equal to  $\dfrac{\pi^2}{k}$  (where  $k \in I$ , then k is)

# \_

**Answer: C** 

$$xrac{dy}{dx}+y(2x+1)=xe^x$$
 and f(0) = 0, then the number of solution(s) of  $f(x)=rac{2}{x}$  is equal to:

**14.** If y = f(x) satisfies the differential equation

- A. 0
- B. 1
- C. 2
- D. more than 2

## **Answer: C**



**View Text Solution** 

**15.** If p,q and r are false statements, then which among the following is false ?

A.  $-q \lor r$  is true

B.  $-r \lor q$  is true

C.  $(-q \lor r) \land (-r \lor q)$  is false

D.  $p \wedge [(-q \vee r) \wedge (-r \wedge q)]$  is false.

### **Answer: C**



**View Text Solution** 

**16.**  $x_1,x_2,\ldots,x_{10}$  are 10 observations of x, such that  $\sum x_i=50$  and  $\sum x_ix_j=1100Aai 
eq j$ , then standard deviation of  $x_1,x_2,\ldots,x_{10}$  equal to:

**A.** 5

B. 10

C. 
$$\sqrt{5}$$

D. 
$$\sqrt{10}$$

## **Answer: C**



**View Text Solution** 

17. Two flagstaffs stand on a horizontal plane. A and B are two points on the line joining their feet and between them. The angles of elevation of the tops of the flagstaffs as seen from A are 30° and 60° and as seen from B are 60" and 45°. If AB is 30m, the distance between the flagstaffs in metres is

A. 
$$3+15\sqrt{3}$$

B. 
$$45+15\sqrt{3}$$

c. 
$$60 - 15\sqrt{3}$$

D. 
$$60+15\sqrt{3}$$

## **Answer: D**



# **View Text Solution**

**18.** If  $a an^{-1}(e^x) - b an^{-1}(e^{-x}) = c$ , then value of  $\cot^{-1}(e^x)$  is:

A. 
$$\frac{a\pi + 2c}{2(a+b)}$$

B. 
$$\dfrac{a\pi-2c}{2(a+b)}$$

C.  $\dfrac{a\pi+2c}{2(a-b)}$ 

D. 
$$\dfrac{a\pi-2c}{2(a-b)}$$

# **Answer: B**



# **View Text Solution**

**19.** If 
$$A+B=\frac{\pi}{2}$$
 and  $\sin A+\sin A=1$ , then  $\sin 2A$  is equal to:

**A.** 1

$$B. \frac{1}{\sqrt{2}}$$

C. 0

$$\mathsf{D.} - \frac{1}{\sqrt{2}}$$

## **Answer: C**



**View Text Solution** 

**20.** The equation  $k\sin\theta+\cos2\theta=2k-7$  possesses a solution if :

A. 
$$2 \leq k \leq 6$$

$$\mathrm{B.}\,k>2$$

$$\mathsf{C}.\,k > 6$$

## **Answer: A**



**View Text Solution** 

21. If z is any complex number satisfying |z-4-ri|=2 in argand plane. The maximum and minimum values of  $|{\bf z}|$  are  $\alpha$  and  $\beta$  respectively, then  $\frac{\alpha+\beta}{4}$  is:



**22.** Calculate the number of ways 5 balls can be placed In 3 boxes, such that no box remains empty, if balls as well as boxes are identical?



# **View Text Solution**

23.  $x^2+5x^2+px+q=0$  and  $x^3+7x^2+px+r=0$ , two roots in common. If their third roots are  $\lambda_1$  and  $\lambda_2$  respectively, then  $|\lambda_1+\lambda_2|$  is equal to:



**24.** At a point A (1,1) on ellipse, equation of tangent is y = x. If one of the foci of ellipse is (0,2) and the coordinates of center of ellipse are  $(\alpha, \beta)$  then the value of  $\alpha + \beta$  is (Given length of major axis of ellipse is  $4\sqrt{10}$  units)



**View Text Solution** 

**25.** If the volume of parallelepiped determined by vectors  $(2\bar{a} \times \bar{b})$ ,  $(\bar{b} \times \bar{3}\bar{c})$  and  $5(\bar{c} \times \bar{a})$  is equal to the volume of the parallelepiped determined by vectors  $5(\bar{a}+\bar{b})$ ,  $6(\bar{b}+\bar{c})$  and  $2(\bar{c}+\bar{a})$ , then find

the volume of parallelepiped determined by vectors  $\bar{b}$  and  $\bar{c}$  in cubic units.



# View Text Solution

**26.** If 
$$f'(x)=\phi(x)$$
 and  $\phi'(x)=f(x)$  for all x. Also,  $f(3)=5$  and  $f'(3)=4$ . Then, value of



 $[f(10)]^2 - [\phi(10)]^2$  =



View Text Solution

**28.** If e is the eccentricity of  $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$  and  $\theta$  be the angle between the asymptotes, and let  $\sec\theta/2$  is equal to Ke, then K is equal to



# **View Text Solution**

**29.** Find the value of (fgh)'(0), if f, g and h are differentiable functions with f(0) = 1, p(0) = 2, h(0) = 3 and the derivatives of their pair wise products at x = 0 are (fg)'(0) = 6, (gh)' = 0 = 4 and (hf)'(0) = 5.



**30.** Let  $f(x)=\max\{\left|x^2-2\left|x\right|\right|,\left|x\right|\}$  and  $g(x)=\min\{\left|x^2-2\left|x\right|\right|,\left|x\right|\}$  then if f(x) is not differentiable at 'p' number of points and g(x) is non differentiable at 'q' number of points, then find |p-q|.

