

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 58

Mathematics

1. The term independent of x in the expansion of $\left[\left(t^{-1} - 1\right)x + \left(t^{-1} + 1\right)^{-1}x^{-1} \right]^8 \text{ is :}$ A. $56 \left(\frac{1-t}{1+t}\right)^3$

$$\mathsf{R}.50\left(\frac{1+t}{1+t}\right)^{3}$$
$$\mathsf{B}.56\left(\frac{1-t}{1-t}\right)^{3}$$
$$\mathsf{C}.70\left(\frac{1-t}{1+t}\right)^{4}$$
$$\mathsf{D}.70\left(\frac{1+t}{1-t}\right)^{4}$$

Answer: C

2. Let α_1, α_2 and β_1, β_2 are roots of the equation $ax^2 + bx + c = 0$ and $px^2 + qx + r = 0$ respectively. If the system of equations $\alpha_1 y + \alpha_2 z = 0$ and $\beta_1 y + \beta_2 z = 0$ has a non trivial solution, then

A. $bpr^2 = qac^2$ B. $b^2pr = q^2ac$ C. $bp^2r = qa^2c$

D. none of these

Answer: B

3. The value of
$$\sum_{r=1}^{50} rac{1^3+3^3+5^3+\ldots\,.\,+\left(2r-1
ight)^3}{1+3+5+\ldots\,.\,+\left(2r-1
ight)}$$
 :

A. 85800

B.85700

C. 85600

D. 85500

Answer: A

View Text Solution

4. If
$$P=\{x\in R\colon f(x)=0\}$$
 and $Q=\{x\in R\colon g(x)=0\}$, then $P\cup Q$ is

A.
$$\{x \in R : f(x) + g(x) = 0\}$$

B. $\{x \in RLf(x)g(x) = 0\}$
C. $\Big\{x \in R : (f(x))^2 + (g(x))^2 = 0$

D. none of these

Answer: B

5. If the length of a focal chord of parabola $y^{=}4x$ is $\frac{25}{4}$ and has a positive slope, then the slope of the focal chord will be

A. $\sqrt{3}$ B. $\frac{1}{\sqrt{3}}$ C. $\frac{4}{3}$

D. 1

Answer: C

View Text Solution

6. If (a, b), (c, d), (e, f) are the vertices of a triangle such that a, c, e are in G. P. with common ratio r and b, d, f are in G. P. with common ratio s, then the area of the triangle is

A.
$$\frac{ab}{2}(r+1)(s+2)(s+r)$$

B. $\frac{ab}{2}(r-1)(s-1)(s-r)$
C. $\frac{ab}{2}(r-1)(s+1)(s-r)$
D. $(r+1)(s+1)(s-r)$

Answer: B

View Text Solution

7. Let $\left| \overrightarrow{a} \right| = 2$, $\left| \overrightarrow{b} \right| = 5$. The possible value of k for which the vectors $\overrightarrow{a} + \overrightarrow{kb}$ and $\overrightarrow{a} - \overrightarrow{kb}$ are perpendicular is

A.
$$\frac{2}{5}$$

B. $\frac{3}{5}$
C. $\frac{4}{5}$
D. $\frac{2}{25}$

Answer: A

8. Which of the following function is surjective but not injective?

A.
$$f\!:\!R o R, f(x)=x^4+2x^3-x^2+1$$

B.
$$f \colon R o R, f(x) = x^3 + x + 1$$

C.
$$f\!:\!R o R^+, f(x)=\sqrt{1+x^2}$$

D.
$$f\!:\!R o R, f(x)=x^3+2x^2-x+1$$

Answer: D

View Text Solution

9. If
$$\lim_{x o 1} \frac{ax^3 + bx^2 + cx + d}{(x-1)^3}$$
 exists and finite, then $\frac{b+c+d}{a}$ is equal

to

 $\mathsf{A.}-1$

B. 0

C. 1

D. 7

Answer: A

10. If
$$y = f(x)$$
 satisfies the condition $f(x) = f(4-x) \ \forall x \in (0,4), \ f(x) = f(14-2) \ \forall x \in [4,10] \ f(x) = \begin{cases} [x^2 - 2x] \\ 3 + \sqrt{2} \\ \frac{20 - 2x}{2} \end{cases}$

Then the area bounded by y=f(x), x=0, x=10 and the x -axis is

A.
$$\frac{\pi}{2} + 16$$

B. $\frac{\pi}{2} + 20$
C. $\frac{\pi}{2} + 32$

D. none of these

Answer: C

11. If
$$\int \frac{2\cos x + 3\sin x}{3\cos x + 4\sin x} dx = Ax + B$$
 , then

 $\ln |3\cos x + 4\sin x| + C(A+B)$ is equal to

A.
$$\frac{18}{25}$$

B. $\frac{19}{25}$
C. $\frac{17}{25}$
D. $\frac{4}{5}$

Answer: C

View Text Solution

12. `~ (p

 $\mathsf{A.}\,p$

 $\mathsf{B.}\,q$

 $\mathsf{C}.\,p\wedge\,-p$

D. $-p \wedge q$

Answer: C

O View Text Solution

13. If the standard deviation of the numbers 2, 3, a and 11 is 3.5, then which of the following is true?

A.
$$3a^2 - 32a + 84 = 0$$

B. $3a^2 - 34a + 91 = 0$

$$\mathsf{C.}\, 3a^2 - 23a + 44 = 0$$

D.
$$3a^2 - 26a + 55 = 0$$

Answer: A

14. Each side of an equilateral triangle subtends an angle of 60° at the top of a tower h meters high located at the centre of the triangle. If a meters is the length of each side of the triangle, then

A.
$$3a^2 = 2h^2$$

B. $2a^2 = 3h^2$
C. $a^2 = 3h^2$
D. $3a^2 = h^2$

Answer: B

View Text Solution

15. The value of x satisfying the equation
$$(\sin^{-1} x)^3 - (\cos^{-1} x)^3 + (\sin^{-1} x)(\cos^{-1} x)(\sin^{-1} x - \cos^{-1} x) = \frac{\pi^3}{16}$$

is

A.
$$\cos\frac{\pi}{5}$$

B.
$$\cos \frac{\pi}{4}$$

C. $\cos \frac{\pi}{8}$
D. $\cos \frac{\pi}{12}$

Answer: C

non-differentiable is/are

A. 0

B. 1

C. 2

D. 3

Answer: C

17. The hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, the area of the triangle formed by the

asymptotes and the tangent drawn to it at (a, 0) is

A. 3ab

B. ab

 $\mathsf{C.}\,2ab$

D.
$$\frac{1}{3}ab$$

Answer: B

View Text Solution

18. Let f(x) is a differentiable function such that f(x+y)=f(x)+f(y)+2xy $orall x,y\in R$ and $\lim_{x o 0}rac{f(x)}{x}=210$, then f (2) is equal

A. 20

 $\mathsf{B}.\,105$

C.424

D. none of these

Answer: C

View Text Solution

19. If
$$270^\circ < heta < 360^\circ, ext{ then } \sqrt{2 + \sqrt{2 + 2\cos heta}}$$
 is equal to

$$A. -2\sin\left(\frac{\theta}{4}\right)$$
$$B. 2\sin\left(\frac{\theta}{4}\right)$$
$$C. 2\cos\left(\frac{\theta}{4}\right)$$
$$D. -2\cos\left(\frac{\theta}{4}\right)$$

Answer: B

20. The general solution of the trigonometric equation $\sin x - \cos x = 1$

is given by

A.
$$x=2n\pi,n\in I$$

B. $x=n\pi+(-1)^nrac{\pi}{4}+rac{\pi}{4},n\in I$
C. $x=2n\pi+rac{\pi}{2},n\in I$
D. $x=nrac{\pi}{2},n\in I$

Answer: B

View Text Solution

21. If ω is non-real root of equation $x^3-1=0$ then value of $\sum_{r=1}^5 \left(1+\omega^r+\omega^{2r}
ight)$ is

22. Let A be the set of all 3×3 skew symmetric matrices whose entries are either –1, 0 or 1. If there are exactly three O's three I's and three (-1)'s, then the number of such matrices is

23. The number of the rectangle in the following figure is

24. If α, β and γ are the roots of the cubic equation $x^3 - 3x^2 + 1 = 0$, then $(\alpha - 2)(\beta - 2)(\gamma - 2) =$

25. A circle C having center at (1, 2) and radius equal to 3, cuts the members of the family of circles passing through two fixed points P(2, 6) and Q(4, 5), such that the common chords pass through a fixed point (21, yı), then the value of $\left(\frac{y_1 - x_1}{7}\right)$ is **View Text Solution**

26. Origin O is the centre of two concentric circles whose radii are a and b respectively, a < b. A line OPQ is drawn to cut the inner circle in P and the outer circle in Q. PR is drawn perpendicular to x – axis and QR is drawn perpendicular to the y- axis. The locus of R is an ellipse touching the two

then the value a - b is

View Text Solution

28. Through the point P(1, 2, 2) a plane is drawn at right angles to OP, O

being the origin, to meet the axes in A, B, C. If the area of triangle ABC is $\frac{240 + \lambda}{8}$ sq. units , then λ equals

29. A normal is drawn at a point A (x, y) of a curve. It meets the X -axis and Y - axis at point P and Q respectively such that $\frac{1}{OP} + \frac{1}{OQ} = 1$ where O is the origin. Then, the equation of such a curve passing through (5, 4) is

View Text Solution

30. $\int_0^5 [x] \{x\} dx$ (where [.]denotes greatest integer function and{.} denotes fractional part of function is