©゙’ doubtnut

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 58

Mathematics

1. The term independent of x in the expansion of $\left[\left(t^{-1}-1\right) x+\left(t^{-1}+1\right)^{-1} x^{-1}\right]^{8}$ is :
A. $56\left(\frac{1-t}{1+t}\right)^{3}$
B. $56\left(\frac{1-t}{1-t}\right)^{3}$
C. $70\left(\frac{1-t}{1+t}\right)^{4}$
D. $70\left(\frac{1+t}{1-t}\right)^{4}$

Answer: C

D View Text Solution

2. Let α_{1}, α_{2} and β_{1}, β_{2} are roots of the equation $a x^{2}+b x+c=0$ and $p x^{2}+q x+r=0$ respectively. If the system of equations $\alpha_{1} y+\alpha_{2} z=0$ and $\beta_{1} y+\beta_{2} z=0$ has a non trivial solution, then
A. $b p r^{2}=q a c^{2}$
B. $b^{2} p r=q^{2} a c$
C. $b p^{2} r=q a^{2} c$
D. none of these

Answer: B

D View Text Solution

3. The value of $\sum_{r=1}^{50} \frac{1^{3}+3^{3}+5^{3}+\ldots .+(2 r-1)^{3}}{1+3+5+\ldots .+(2 r-1)}$:
A. 85800
B. 85700
C. 85600
D. 85500

Answer: A

- View Text Solution

4. If $P=\{x \in R: f(x)=0\}$ and $Q=\{x \in R: g(x)=0\}$, then $P \cup Q$ is
A. $\{x \in R: f(x)+g(x)=0\}$
B. $\{x \in R L f(x) g(x)=0\}$
C. $\left\{x \in R:(f(x))^{2}+(g(x))^{2}=0\right\}$
D. none of these
5. If the length of a focal chord of parabola $y=4 x$ is $\frac{25}{4}$ and has a positive slope, then the slope of the focal chord will be
A. $\sqrt{3}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{4}{3}$
D. 1

Answer: C

- View Text Solution

6. If $(a, b),(c, d),(e, f)$ are the vertices of a triangle such that $\mathrm{a}, \mathrm{c}, \mathrm{e}$ are in G. P. with common ratio r and b, d, f are in G. P. with common ratio s, then the area of the triangle is
A. $\frac{a b}{2}(r+1)(s+2)(s+r)$
B. $\frac{a b}{2}(r-1)(s-1)(s-r)$
C. $\frac{a b}{2}(r-1)(s+1)(s-r)$
D. $(r+1)(s+1)(s-r)$

Answer: B

- View Text Solution

7. Let $|\vec{a}|=2,|\vec{b}|=5$. The possible value of k for which the vectors $\vec{a}+k \vec{b}$ and $\vec{a}-k \vec{b}$ are perpendicular is
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{4}{5}$
D. $\frac{2}{25}$
8. Which of the following function is surjective but not injective?
A. $f: R \rightarrow R, f(x)=x^{4}+2 x^{3}-x^{2}+1$
B. $f: R \rightarrow R, f(x)=x^{3}+x+1$
C. $f: R \rightarrow R^{+}, f(x)=\sqrt{1+x^{2}}$
D. $f: R \rightarrow R, f(x)=x^{3}+2 x^{2}-x+1$

Answer: D

- View Text Solution

9. If $\lim _{x \rightarrow 1} \frac{a x^{3}+b x^{2}+c x+d}{(x-1)^{3}}$ exists and finite, then $\frac{b+c+d}{a}$ is equal to
A. -1
B. 0
C. 1
D. 7

Answer: A

- View Text Solution

10. If $y=f(x)$ satisfies the condition

$$
f(x)=f(4-x) \forall x \in(0,4), f(x)=f(14-2) \forall x \in[4,10] f(x)=\left\{\begin{array}{l}
{\left[x^{2}-\right.} \\
3+\sqrt{2} \\
\frac{20-2 x}{3},
\end{array}\right.
$$

Then the area bounded by $y=f(x), x=0, x=10$ and the x -axis is
A. $\frac{\pi}{2}+16$
B. $\frac{\pi}{2}+20$
C. $\frac{\pi}{2}+32$
D. none of these

Answer: C

11. If $\int \frac{2 \cos x+3 \sin x}{3 \cos x+4 \sin x} d x=A x+B \quad$, then $\ln |3 \cos x+4 \sin x|+C(A+B)$ is equal to
A. $\frac{18}{25}$
B. $\frac{19}{25}$
C. $\frac{17}{25}$
D. $\frac{4}{5}$

Answer: C

- View Text Solution

12. $\sim(p$
A. p
B. q
C. $p \wedge-p$
D. $-p \wedge q$

Answer: C

- View Text Solution

13. If the standard deviation of the numbers $2,3, a$ and 11 is 3.5 , then which of the following is true?
A. $3 a^{2}-32 a+84=0$
B. $3 a^{2}-34 a+91=0$
C. $3 a^{2}-23 a+44=0$
D. $3 a^{2}-26 a+55=0$

Answer: A

- View Text Solution

14. Each side of an equilateral triangle subtends an angle of 60° at the top of a tower h meters high located at the centre of the triangle. If a meters is the length of each side of the triangle, then
A. $3 a^{2}=2 h^{2}$
B. $2 a^{2}=3 h^{2}$
C. $a^{2}=3 h^{2}$
D. $3 a^{2}=h^{2}$

Answer: B

- View Text Solution

15. The value of x satisfying the equation

$$
\left(\sin ^{-1} x\right)^{3}-\left(\cos ^{-1} x\right)^{3}+\left(\sin ^{-1} x\right)\left(\cos ^{-1} x\right)\left(\sin ^{-1} x-\cos ^{-1} x\right)=\frac{\pi^{3}}{16}
$$

is
A. $\cos \frac{\pi}{5}$
B. $\cos \frac{\pi}{4}$
C. $\cos \frac{\pi}{8}$
D. $\cos \frac{\pi}{12}$

Answer: C

- View Text Solution

16. The number of points where the function, $f(x)=\cos |2018 \pi-x|+\sin \mid 2020 \pi$ is $-x|+(x-\pi)| x^{2}-3 \pi x+2 \pi^{2} \mid$ non-differentiable is/are
A. 0
B. 1
C. 2
D. 3

Answer: C

17. The hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, the area of the triangle formed by the asymptotes and the tangent drawn to it at $(a, 0)$ is
A. $3 a b$
B. $a b$
C. $2 a b$
D. $\frac{1}{3} a b$

Answer: B

- View Text Solution

18. Let $f(x)$ is a differentiable function such that $f(x+y)=f(x)+f(y)+2 x y \forall x, y \in R$ and $\lim _{x \rightarrow 0} \frac{f(x)}{x}=210$, then $f(2)$ is equal
A. 20
B. 105
C. 424
D. none of these

Answer: C

- View Text Solution

19. If $270^{\circ}<\theta<360^{\circ}$, then $\sqrt{2+\sqrt{2+2 \cos \theta}}$ is equal to
A. $-2 \sin \left(\frac{\theta}{4}\right)$
B. $2 \sin \left(\frac{\theta}{4}\right)$
C. $2 \cos \left(\frac{\theta}{4}\right)$
D. $-2 \cos \left(\frac{\theta}{4}\right)$

Answer: B

20. The general solution of the trigonometric equation $\sin x-\cos x=1$ is given by
A. $x=2 n \pi, n \in I$
B. $x=n \pi+(-1)^{n} \frac{\pi}{4}+\frac{\pi}{4}, n \in I$
C. $x=2 n \pi+\frac{\pi}{2}, n \in I$
D. $x=n \frac{\pi}{2}, n \in I$

Answer: B

- View Text Solution

21. If ω is non real root of equation $x^{3}-1=0$ then value of $\sum_{r-1}^{5}\left(1+\omega^{r}+\omega^{2 r}\right)$ is
22. Let A be the set of all 3×3 skew symmetric matrices whose entries are either $-1,0$ or 1 . If there are exactly three 0 's three I's and three (-1)'s, then the number of such matrices is

D View Text Solution

23. The number of the rectangle in the following figure is

24. If α, β and γ are the roots of the cubic equation $x^{3}-3 x^{2}+1=0$, then $(\alpha-2)(\beta-2)(\gamma-2)=$

- View Text Solution

25. A circle C having center at $(1,2)$ and radius equal to 3 , cuts the members of the family of circles passing through two fixed points $P(2,6)$ and $Q(4,5)$, such that the common chords pass through a fixed point (21, $\mathrm{y} 1)$, then the value of $\left(\frac{y_{1}-x_{1}}{7}\right)$ is

- View Text Solution

26. Origin O is the centre of two concentric circles whose radii are a and b respectively, $a<b$. A line OPQ iş drawn to cut the inner circle in P and the outer circle in Q. $P R$ is drawn perpendicular to x - axis and $Q R$ is drawn perpendicular to the y - axis. The locus of R is an ellipse touching the two
cireles. If the foci of the ellipse lie on the inner circle, if eccentricity is $\sqrt{2} K$, then the value of K is

- View Text Solution

27. If the minimum and maximum value of function $3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$ on the interval (0,3] is b and a respectively, then the value $a-b$ is

- View Text Solution

28. Through the point $P(1,2,2)$ a plane is drawn at right angles to $O P, O$ being the origin, to meet the axes in A, B, C. If the area of triangle $A B C$ is $240+\lambda$ 8 sq. units, then λ equals

- View Text Solution

29. A normal is drawn at a point $A(x, y)$ of a curve. It meets the X-axis and Y - axis at point P and Q respectively such that $\frac{1}{O P}+\frac{1}{O Q}=1$ where O is the origin. Then, the equation of such a curve passing through $(5,4)$ is

- View Text Solution

30. $\int_{0}^{5}[x]\{x\} d x$ (where [.]denotes greatest integer function and\{.\} denotes fractional part of function is

- View Text Solution

