

India's Number 1 Education App

## **MATHS**

## **BOOKS - NTA MOCK TESTS**

# NTA TPC JEE MAIN TEST 64

### **Mathematics**

1. In a  $\Delta ABC$  vertex A and B lies on 2 - axis and y -axis respectively, where

A(a,0) is a fixed point, B is a variable point such that  $\angle C = rac{ an^{-1} \, 4}{3}$  and

A. 
$$2x - 4y + 3a = 0$$

B. 
$$4x + 2y - 3a = 0$$

C. 
$$2x + 4y + 7a = 0$$

D. 
$$4x - 2y + 5a = 0$$

### **Answer: A**



# View Text Solution

- 2. If  $\left|\frac{a,a^2,1+a^3}{b,b^2,1+b^3},\left(c,c^2,1+c^3\right)\right|=0$  and the vectors  $\overrightarrow{A}=\left(1,a,a^2\right),\overrightarrow{B}=\left(1,b,b^2\right),\overrightarrow{C}$  non =  $\left(1,c,c^2\right)$  coplanar then the product abc =
  - **A.** 0
  - **B**. 1
  - C. -1
  - D. None

### **Answer: C**



**3.** The sum of values of r for which

$$^{18}C_{r-2}+2$$
.  $^{18}C_{r-1}+^{18}C_r\geq {}^{20}C_{13}$ 

- A. 40
- B. 50
- C. 60
- D. 70

### **Answer: D**



**4.** 
$$^{14}C_7+\sum_{i=1}^3={}^{17-i}C_6=$$

A. 
$$^{16}C_7$$

B. 
$$^{17}C_7$$

C. 
$$^{17}C_8$$

D.  $^{16}C_8$ 

**Answer: B** 



**View Text Solution** 

- **5.** The relation R defined as  $R=\{(x,y)|x+y|=10, x,y\in N\}$  is
  - A. reflexive only
  - B. symmetric only
  - C. transitive only
  - D. symmetric and transitive

**Answer: B** 



**6.** A straight line PQ touches ellipse  $\frac{x^2}{(3)^2} + \frac{y^2}{(1)^2} = 1$  and circle  $x^2 + y^2 = 4$ . RS is a focal chord of ellipse. If RS is parallel to PQ and RS meets the circle at points R' and S', then the length of R' S' is

A. 1 unit

B. 2 unit

C. 3 unit

D. 4 unit

### **Answer: B**



# **View Text Solution**

**7.** A parabola is drawn through two given points A (2, 0) and B(-2, 0) such that its directrix always touch the circle  $x^2+y^2=16$ , then locus of focus of the parabola is

A. 
$$3x^2 + 4y^2 = 48$$

B.  $4x^2 + 3y^2 = 48$ 

C.  $3x^2 + 4y^2 = 60$ 

D.  $4x^2 + 3y^2 = 60$ 

Answer: A



View Text Solution

8. The acute angle between two lines such that the direction cosines I, m, n, of each of them satisfy the equations

l+m+n=0 and  $l^2+m^2\!-\!n^2=0$  is:

A.  $15^{\circ}$ 

B.  $30^{\circ}$ 

C.  $60^{\circ}$ 

D.  $45^{\circ}$ 

**Answer: C** 

**9.** Let 
$$\overrightarrow{a}=\alpha \hat{i}+2\hat{j}-3\hat{k}, \overrightarrow{b}=\hat{i}+2\alpha \hat{j}-2\hat{k}$$
 and  $\overrightarrow{c}=2\hat{i}-\alpha \hat{j}+\hat{k}$  where  $a\in R$  if  $\left\{\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{b}\times\overrightarrow{c}\right)\right\}\times\left(\overrightarrow{c}\times\overrightarrow{a}\right)=0$  then

the value of lpha is

A. 
$$\frac{2}{3}$$

B. 
$$\frac{3}{2}$$

C. 
$$\frac{3}{4}$$
D.  $\frac{4}{3}$ 

Answer: A



View Text Solution

**10.** If 
$$\lim_{x\to 0} \frac{(4x-1)^{\frac{1}{3}}+a+bx}{x}$$
 exists and is equal to  $\frac{1}{3}$  then  $ab=$ 

**A.** 1

B.1/2

C. -1

D. -1/2

#### **Answer: C**



View Text Solution

**11.** The differential equation of the family of curves represented by  $c(u+c)^2=x^3$  is

A. 
$$y \frac{d^2y}{dx^2} - y^2 \left(\frac{dy}{dx}\right)^2 = 27x$$

B. 
$$12y {\left(rac{dy}{dx}
ight)}^2 = 8x {\left(rac{dy}{dx}
ight)}^3 - 27x$$

C. 
$$8y{\left(rac{dy}{dx}
ight)}^3=12x{\left(rac{dy}{dx}
ight)}^2-27x$$

D. 
$$\left(rac{dy}{dx}
ight)^3 - \left(rac{dy}{dx}
ight)^2 + \left(rac{dy}{dx}
ight) - y = 27x$$

#### **Answer: B**



**12.** 
$$\int \!\! rac{1-\cos x - x \sin x}{x^2 + 1 - 2x \sin x} dx = an^{-1}(f(x)) + c$$
 the  $f(n)$  is

A. continuous at 
$$x = 0$$

$$\mathrm{D.}\,f\!\left(\frac{\pi}{2}\right)=1$$

#### **Answer: B**



# **View Text Solution**

# **13.** If p, q, and r are the statements and $(p \wedge q) \wedge (q \wedge r)$ is true, then

# D. p, q, r are all false

# Answer: A



View Text Solution

- frequency 1, 2, 3, 4.....11 then median is
  - A. 128
  - B. 64
  - D. 16

C. 32

**Answer: A** 



View Text Solution

15. The least value of n for which  $(n-2)x^2+8x+(n+4)>\sin^{-1}(\sin 12)+\cos^{-1}(\cos 12)\,orall x\in R(n\in N)$ 

**14.** If marks scored by students of a class are  $1,\,2,\,4,\,......2^{10}$  with

is

A. 4

B. 5

C. 6

D. 7

### **Answer: B**



View Text Solution

**16.** The point  $\left(\frac{1}{e}, \frac{1}{e'}\right)$  lies on, if e and el are the eccentricities of the

hyperbola

$$rac{x^2}{a^2} - rac{y^2}{b^2} = 1$$
 and  $rac{y^2}{b^2} - rac{x^2}{a^2} = 1$ 

A. 
$$x^2+y^2=1$$

$$\mathsf{B.}\,x^2+y^2=2$$

$$\mathsf{C.}\,x^2+y^2=3$$

D. 
$$x^2 + y^2 = 4$$

Answer: A



View Text Solution

- **17.** The value of  $\sin^2\alpha+\sin\left(\frac{\pi}{3}-\alpha\right)\cdot\sin\left(\frac{\pi}{3}+\alpha\right)$  is equal to
  - A.  $\frac{1}{4}$
  - $\mathsf{B.}\;\frac{1}{2}$
  - $\mathsf{C.}\,\frac{3}{4}$
  - D. 1

**Answer: C** 



**18.** A ten digit number is formed (without repetition), the probability that the difference of the digits at equal distances from the beginning and the end is always 1 is ?

A. 
$$\frac{17}{1944}$$

$$\mathsf{B.}\;\frac{4}{27}$$

C. 
$$\frac{1}{945}$$

D. 
$$\frac{34}{243}$$

## Answer: C



# **View Text Solution**

**19.** The area enclosed by y=g(x), x=-3, x=5 and x-axis where g(x) is the inverse of  $f(x)=x^3+3x+1$  is

A. 
$$\frac{5}{2}$$

B. 3

### Answer: D



**View Text Solution** 

- **20.** The upper  $\left(\frac{3}{4}\right)^{th}$  portion of a vertical pole subtends an angle  $an^{-1}\Big(rac{3}{5}\Big)$  at a point in the horizontal plane through its foot and at a distance 40 m from the foot. The height of vertical pole is:
  - A. 20 m
  - B. 40 m
  - C. 60 m
  - D. 80 m

### Answer: B



**21.** Suppose P be the  $7^{th}$  term from the beginning and Q be the  $7^{th}$  term from the end in the expansion of  $\left(\sqrt[3]{3}+\frac{1}{\sqrt[3]{4}}\right)^n$  where  $n\in N$ . If  $\frac{Q}{R}=12$ , then what will be the possible value of n.



View Text Solution

**22.** If the roots of the equation  $x^2-5x+1=0$  are  $\alpha$  and  $\beta$ , then the value of  $\frac{1}{(\alpha-5)^2}+\frac{1}{(\beta-5)^2}$  is



**23.** If two opposite vertices of a rectangle are (2,5) and (5,1) and the other two vertices points are on the straight line y=2x+k, then the absolute value of k is



- 24. A 5.5 ft tall man walks at a speed 5.4 ft /s towards a lamp post (height
- = 22 ft). At what rate the shadow is moving (take absolute value) in ft/s?



View Text Solution

**25.** Let f(x) and g(x) are two functions of degree 4 such that  $g(\alpha)=g'(\alpha)=g''(\alpha)=0.$  If  $\lim_{x\to\alpha}\frac{f(x)}{g(x)}=0$ , then the number of different real solutions of equation  $\frac{d}{dx}(f(x)g(x))=0$  is equal to



**26.** The fundamental period of a function f, defined as  $f(x)=rac{1}{2}igg(rac{|\sin x|}{\cos x}+rac{\sin x}{|\cos x|}igg)$  is  $m\pi$  then find the value of m.



**27.** If the sum of the roots of the equation  $\log_{\sqrt{2}\sin x}(1+\cos x)=2, x$  is

$$\in \left[ \, -rac{\pi}{2}, rac{3\pi}{2} 
ight] rac{p\pi}{q}, \,\, ext{where G.C.D(p,q)}$$
 = 1, then  $p^2+q^2$  is

