

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 66

Mathematics

1.
$$|z_1 + z_2|^2 + |z_1 - z_2|^2$$
 is equal to
A. $2(|z|_1 + |z|_2)$
B. $2(|z_1|^2 + |z_2|^2)$
C. $|z_1||z_2|$
D. $|z_1|^2 + |z_2|^2$

Answer: B

2. If the system of equation $x-2y+z=-4, x+y+\lambda z=4$ and 2x-y+2z=2 has no solution,

then λ lies in

A.
$$\left(0, \frac{3}{4}\right)$$

B. $\left(\frac{3}{4}, \frac{5}{4}\right)$
C. $\left(\frac{5}{4}, 2\right)$
D. $(2, 4)$

Answer: B

View Text Solution

3. The number of ways in which three people can divide six identical apples, one orange, one lemon, one banana, one pear, one plum and one apricot among themselves is

A. 8C_3

 $B.(3)^{6}$

C. $^8C_4 imes (3)^6$

D. none

Answer: D

View Text Solution

4. The number of integral values of λ for which $x^2 + y^2 + 2\lambda x + 2(1-\lambda)y + 9s$ = 0

the equation of a circle whose radius equal to 4, is

A. 1

B. 2

C. 3

D. 4

Answer: B

5. Consider the normals drawn at three different points on the parabola

 $y^2 = 4x$ passing through the point (h, k), then

- A. h < 2B. h > 2C. h < 3
- $\mathsf{D}.\,h>3$

Answer: B

6. The locus of the centre of the circle described on any focal chord of a

parabola $y^2 = 4ax$ as diameter is

A.
$$x_2 = 2a(y-a)$$

B. $m_2 = -2a(y-a)$
C. $y_2 = 2a(x-a)$
D. $y^2 = -2a(x-a)$

Answer: C

View Text Solution

7. Let E and F be two independent events such that P (E) > P(F). The probability that both E and F happened is $\frac{1}{12}$ and the probability that neither E nor F happens is $\frac{1}{2}$, then

A.
$$P(E) = \frac{1}{3}, P(F) = \frac{1}{4}$$

B. $P(E) = \frac{1}{2}, P(F) = \frac{1}{6}$
C. $P(E) = \frac{1}{2}, P(F) = \frac{1}{8}$

D. none of these

Answer: A

8. A non-zero vector \overrightarrow{a} is parallel to the line of intersection of the plane determined by the vectors \hat{i} , $\hat{i} + \hat{j}$ and the plane determined by the vectors $\hat{i} - \hat{j}$, $\hat{i} + \hat{k}$. The angle between \overrightarrow{a} and $\hat{i} - 2\hat{j} + 2\hat{k}$ is

Answer: A

9. If
$$y= an^{-1}$$
 $rac{2^x}{1+2^{2x+1}}$, then $rac{dy}{dx}$ at x=0 is

$$A. -\frac{3}{5}\log 2$$
$$B. \frac{2}{5}\log 2$$
$$C. -\frac{3}{2}\log 2$$

D. None

Answer: A

View Text Solution

10. If A, B, C are angles of a triangle such that

$$\lim_{x \to \infty} \left[rac{\sin(Ax^2 - Bx + C)}{\sin(Cx^2 + Bx + A)} + rac{\cos(Ax^2 + Cx + B)}{\cos(Cx^2 + Ax + B)}
ight]$$

 $rac{2}{\sqrt{3}}$
 $\angle B = 30^\circ$ and perimeter of triangle is $4 + 2\sqrt{3}$, then the area of

triangle is

A. $\sqrt{3}$ sq. units

B. 2 sq. units

C. $\frac{1}{2}$ sq. units

D. $3\sqrt{3}$ sq. units

Answer: A

View Text Solution

11.

$$f(x)=\sin x\,orall x\in \Big[0,rac{\pi}{2}\Big], f(x) \, ext{ and } \,+f(\pi-x)=2\,orall x\in \Big(rac{\pi}{2},\pi\Big]f(x)$$

If n, m denotes number of points where f(x) is discontinuous and nondifferentiable respectively in $[0, 2\pi)$, then value of n + m is

A. 0

B. 1

C. 2

D. 4

Answer: B

12. Equation of curve passing through P(1,1) represented by any

$$\frac{dy}{dx} = \frac{2x - 5y}{5x + 2y}$$
is
A. $x^2 + y^2 - 5xy + 3 = 0$
B. $x^2 + y^2 + 5xy - 7 = 0$
C. $x^2 - y^2 + 5xy - 5 = 0$
D. $x^2 - y^2 - 5xy + 5 = 0$

Answer: D

View Text Solution

13. If
$$A_n = \sin n\theta$$
. $\sec^n \theta$, $B_n = \cos \theta then$. $\sec^n \theta$,
 $\frac{B_n - B_{n-1}}{A_{n-1}} + \frac{1}{n} \cdot \frac{A_n}{B_n}$ is equal to

A. 0

 $B.\tan\theta$

 $\mathsf{C}.- an heta + rac{ an(n heta)}{n}$

$$\mathsf{D}. an heta+rac{ an(n heta)}{n}$$

Answer: C

View Text Solution

14. The centre of the ellipse
$$\frac{(x+y-2)^2}{16} + \frac{(x-y)^2}{9} = 1$$
 is
A. (0, 0)
B. (1, 1)
C. (1, 0)
D. (0, 1)

Answer: B

15. If $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, then the two couves $y = \cos x$ and $y = \sin 3x$

intersect at

A.
$$\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$$
 and $\left(\frac{\pi}{8}, \frac{\cos \pi}{8}\right)$
B. $\left(-\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{\pi}{8}, \frac{\cos \pi}{8}\right)$
C. $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$ and $\left(\frac{\pi}{8}, -\frac{\cos \pi}{8}\right)$
D. $\left(-\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$

Answer: A

16. If
$$x=rac{1}{5}$$
 the value of $\cos\left(\cos^{-1}x+2\sin^{-1}x
ight)$ is
A. $\sqrt{rac{24}{25}}$
B. $-\sqrt{rac{24}{25}}$
C. $-rac{1}{5}$

D.
$$\frac{1}{5}$$

Answer: C

17. The prabability of getting the sum more than 7 when a pair of dice is tossed is

A.
$$\frac{1}{9}$$

B. $\frac{1}{4}$
C. $\frac{7}{12}$
D. $\frac{5}{12}$

Answer: D

18. The area bounded by the curve $f(x)=\cos^{-1}(\cos x), x\in [0,2\pi]$ with

the tangent to the curve

$$g(x) = |{\cos x}| atx = \pi, ext{ is }$$

A.
$$(\pi+1)^2$$
 sq. units
B. $(\pi-1)^2$ sq. units
C. $rac{(\pi-1)(2\pi-1)}{2}$ sq. units

D. none of these

Answer: B

View Text Solution

19. The variance of the first n natural number is

A.
$$rac{n^2+1}{12}$$

B. $rac{n^2-1}{12}$
C. $rac{(n+1)(2n+1)}{6}$

D. None of these

Answer: B

20. Consider following statements Statement - I :

(p^~a)^(vpng) is a fallacy.

Statement - II : $(p
ightarrow q) \leftrightarrow (\ensuremath{\sc q}
ightarrow \ensuremath{\sc r} p)$ is a tautology.

A. Statement - I is true, statement -II is false.

B. Statement - I is false, Statement - II is true.

C. Statement - I true, Statement - II is true, Statement - II is a correct

explanation for Statement - I.

D. Statement - I is true, Statement - II is true, Statement - II is not a

correct explanation for Statement - I.

Answer: D

21. Let X be the set consisting of the first 2018 terms of the arithmetic progression 1,6,11, ... , and Y be the set consisting of the first 2018 terms of the arithmetic progression 9,16,23, Then $n(X \cup Y) =$ ____

View Text Solution

22. Suppose
$$(5x-4y)^{23} = \sum_{r=0}^{23} T_{r+1}$$
, where $T_{r+1} = 23_{Cr}(5x)^{23-r}(-4y)^r$ and let $x = \frac{1}{6}$ and $y = \frac{1}{8}$. Then, what will be the possible the value of $\sum_{r=1}^{23} (|T_r| - |T_{r+1}|)$

View Text Solution

23. The coefficient of x in

$$f(x) = egin{bmatrix} x & 1 + \sin x & \cos x \ 1 & \log(1 + x) & 2 \ x^2 & 1 + x^2 & 0 \ \end{bmatrix}, \ -1 < x \ ext{ is } \le 1$$

p then |p| is

—

24. The sum of roots of $ax^2 + bx + c = 0$, if the product of roots is 9 and

a, b, care in A. P., is

View Text Solution

25. If set Aand B have 3 and 6 elements each, then the minimum number

of elements in $A\cup B$ is

View Text Solution

26. If the line y=3x+lpha touches the hyperbola $9x^2-5y^2=45$, then |lpha|

is equal to

27. Consider the real-valued function $f(x) = x^4 + 6x^3 + 35x^2 + 6$ What

+1

is the value of (m +n+p),

where m = number of points of inflection of f(x), n = number of stationary

points of f(x), p = number of points of local minima of f(x)

View Text Solution

View Text Solution

28.
$$If \int\limits_{0}^{0} f(x) dx = 5$$
, then the value of $\sum_{k=1}^{10} \int\limits_{0}^{1} f(x+k-1) dx$ is

represents the greates integer function)

30. The number of positive integral values of x satisfying the equation

 $\left[\frac{x}{13}\right]=\left[\frac{x}{17}\right]$ is denoted by n, (where [.] denotes the greatest integer function) then $\frac{n}{3}$ is equal to