

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 67

Mathematics

1. If for the complex number

 $|z_1|$ and $|z_2|$, $|z_1+z_2|=|z_1-z_2|$ is equal to

A. π

B. $\frac{\pi}{2}$

C.
$$\frac{\pi}{4}$$

D. 4

Answer: B

2. If
$$\Delta_1=egin{array}{c|ccc}1&1&1\\a&b&c\\a^2&b^2&c^2\end{array}$$
 , $\Delta_2=egin{array}{c|ccc}1&a&bc\\1&b&ca\\1&c&ab\end{array}$ then

A.
$$\Delta_1 + \Delta_2 = 0$$

B.
$$\Delta_1 = \Delta_2$$

C.
$$\Delta_1+2\Delta_2=0$$

$$\mathsf{D.}\,\Delta_1-2\Delta_2=0$$

Answer: B

can be arranged from amongst n couples such that no husband and wife play in the same game is

(Note: Mixed doubles is a match in which a man and a woman play as partners against another man and woman.)

3. The number of ways in which a mixed doubles game

- A. nP_4
- B. nC_4
- C. $\frac{1}{2}(^nP_4)$

D.
$$\frac{1}{2}(^nC_4)$$

Answer: C

View Text Solution

4. If
$$S_n = \frac{1}{1.3.4} + \frac{1}{2.4.5} + \ldots$$
 then $+\frac{1}{n(n+2)(n+3)}$

 $\lim \, S_n$ is equal to $n o \infty$

A.
$$\frac{1}{2}$$

B.
$$\frac{5}{36}$$

c.
$$\frac{5}{12}$$

$$\mathsf{D.}\;\frac{5}{6}$$

Answer: B

5. If the chords of the hyperbola $x^2-y^2=16$ touches the parabola $y^2=16x$, then the locus of the middle points of these chords is a curve

A.
$$y^2(x+4) = x^3$$

B.
$$y^2(x-4) = x^3$$

C.
$$v^2(x+8) = 3x^3$$

D.
$$y^2(x-8)-2x^3$$

Answer: B

6. Let A (-2, 2) and B (2,-2) be two points. P is a variable point such that area of ΔPAB is 8 then locus of P is

A.
$$x+y=\pm 1$$

B.
$$x+y=\pm 2$$

$$\mathsf{C.}\,x+y=\,\pm\,3$$

D.
$$x+y=\pm 4$$

Answer: D

View Text Solution

7. The distance of point of intersection of lines

$$\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$$
 and $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$

from (1, -4,7), is

A.
$$\sqrt{15}$$

B.
$$\sqrt{27}$$

C.
$$\sqrt{26}$$

D.
$$\sqrt{14}$$

Answer: C

8. Given
$$\left|\overrightarrow{a}\right| - \left|\overrightarrow{b}\right| = 1$$
 and $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{3}$, if \overrightarrow{c} be a vector such that $\overrightarrow{c} - \overrightarrow{a} - 2\overrightarrow{b} = 3\left(\overrightarrow{a} \times \overrightarrow{b}\right)$, then \overrightarrow{c} . \overrightarrow{b} is equal to

$$\mathsf{A.}-rac{1}{2}$$

3.
$$\frac{1}{2}$$

c.
$$\frac{3}{2}$$

D.
$$\frac{5}{2}$$

Answer: D

View Text Solution

$$= \left\{ egin{array}{ll} rac{ax^2 + bx + c(\cot x)^n}{4 + (\cot x)^n} &, & x \in \left(0, rac{\pi}{4}
ight) \ & 1 &, & ext{at } x = rac{\pi}{4}, &, \ rac{\sin x + \cos x + (an x)^n}{1 + c(an x)^n} &, & x \in \left(rac{\pi}{4}, rac{\pi}{2}
ight) \end{array}
ight.$$

9. let

where a, b, c are real constants and $f(x) = \lim_{n \to \infty} g(x)$.

If

 $\lim_{x o rac{\pi}{4}} \;$ f(x) exists, then c may be $x o rac{\pi}{4}$ equal to

- **A.** 1
- B. $\frac{1}{2}$
- C. 3
- D. -1

Answer: D

View Text Solution

10. If f(x) be differentiable function and curve y=f(x) passes through (1, 1) and satisfies the relation

$$\lim_{x o 1} rac{f(x)-1}{x-1}$$
 is equal to

 $2f(x+y)+f(x-y)+3y^2$ then =3f(x)+2xy,

Answer: C

11.
$$2y\sin x \frac{dy}{dx} = \sin 2x - y^2\cos x \ ext{and} \ atx = \frac{\pi}{2}, y = 1,$$
 then

If

A.
$$y^2 = 1 + \cos x$$

$$\mathsf{B}.\,y=\sin^2x$$

$$\mathsf{C.}\, y^2 \sin x = 1 + \cos x$$

D.
$$y^2 = \sin x$$

Answer: D

View Text Solution

12. If
$$\int \left(rac{x^2-x+1}{x^2+1}
ight) . \, e^{\cot^{-1}x} dx = A(x) . \, e^{\cot^{-1}x} + C,$$

where C is constant of integration, then A(x) is equal to

$$A. -x$$

B.
$$\sqrt{1-x}$$

D.
$$\sqrt{1+x}$$

Answer: C

View Text Solution

13. The value of x in (0, $\frac{\pi}{2}$) satisfying equation

$$rac{\sqrt{5}-1}{\sin x}+rac{\sqrt{10+2\sqrt{5}}}{\cos x}$$
=8` is

A.
$$\frac{\pi}{8}$$

B.
$$\frac{\pi}{9}$$

C.
$$\frac{\pi}{10}$$

D. none of these

Answer: C

- **14.** Rectangle ABCD has area 200 sq. unit. An ellipse with area 200π . unit passes through A and C has focii at B and D. Then perimeter of the rectangle ABCD is
 - A. 80 unit
 - B. 40 unit
 - C. 20 unit
 - D. 60 unit

Answer: A

15. Number of solutions of the equations $y=rac{1}{3}[\sin x+[\sin x+[\sin x]]]$ and $[y+[y]]=2\cos x$, where [.] denotes the greatest integer function is:

- A. 0
- B. 1
- C. 2
- D. infinite

Answer: A

equal to $A. \frac{a-b}{1+ab}$

16. If $\frac{\sin^{-1}(2a)}{1+a^2} + \sin^{-1}\frac{2b}{1+b^2}$ then x is $=2ta^{-1}x$,

B.
$$\dfrac{b}{1+ab}$$
C. $\dfrac{b}{1-ab}$
D. $\dfrac{a+b}{1-ab}$

Answer: D

17. If the line 2x+y+k=0 is a mormal to the parabola $y^2+8x=0$, then the value of k is

B8
C24
D. 24
Answer: D View Text Solution
18. The coefficient of variation of 10 observations, if the
sum of squares of deviations taken from their mean 50 is
250, is
A. 0.1

A. -16

- B. 0.4
- C. 0.5
- D. 0.01

Answer: A

View Text Solution

19. The logical proposition $(\ \ (\ \ \, (\ \ \, p \lor q) \lor (p \land r)) \land (\ \ \, q \land r) \ \ \, \text{is equicalent to}$

- A. $(extstyle p \wedge extstyle q) \wedge r$
- B. $(p \wedge r) \wedge { ilde{\hspace{1pt}}} { ilde{\hspace{1pt}}} q$
- C. $(p \wedge { ilde{\hspace{1pt} ext{-}}} q) ee r$

D. ~
$$p \lor r$$

Answer: B

View Text Solution

20. The area enclosed by $y=g(x), \quad x=-3, \quad x=5$ and x-axis where g(x) is the inverse of $f(x)=x^3+3x+1$ is

A.
$$\frac{5}{2}$$

$$\mathsf{C.}\ \frac{7}{2}$$

D.
$$\frac{9}{2}$$

Answer: D

View Text Solution

- **21.** The expansion of $\left(1+x+x^2\right)^n$ is $a_0+a_1x+a_2x^2+\ldots+a_{2n}x^{2n}.$ Find the value of $\frac{a_0+a_1+a_3+a_4+\ldots}{a_2+a_5+a_8+\ldots}=$
 - 0

View Text Solution

22. If

$$\left[egin{array}{ccc} rac{-1+i\sqrt{3}}{2i} & rac{-1,i\sqrt{3}}{2i} \ rac{i+i\sqrt{3}}{2i} & rac{1-i\sqrt{3}}{2i} \end{array}
ight], i=\sqrt{-1} \,\, ext{and}\,\,\, f(x)=x^2+2$$

Then $\left| \dfrac{f(A)}{\left(2+i\sqrt{3}
ight)}
ight|$ is equal to

23. For the quadratic equation $6x^2+11x+3=0$, if lpha and eta are the roots, then the value of $(6lpha+11)^2+(6eta+11)^2$ is

24. if
$$5f(x)+3f\Big(\frac{1}{x}\Big)=x+2$$
 and $y=xf(x)$, then $\Big(\frac{dy}{dx}\Big)_{x=1}$ is equal

25. Find the length of PQ such that the tangent at the point P on the circle $x^2+y^2+6x+6y=2$ meets the straight line 5x-2y+6=0 at a point Q on the y-axis.

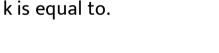
View Text Solution

26. A 2 imes 2 matrix is fromed with entries from the set $\{0,1\}$, The probability that it is singular is

View Text Solution

27. Let f be a function defined on R such that

$$f'(x) = 2018(x - 2017)(x - 2018)^2$$


 $(x-2020)^4$. $(x-2019)^3$ for all $x\in R$. If g is a function

defined an R, with values in $(0,\infty)$ such that $g(x)=e^{f(x)}$ for all $x\in R,$ then the number of points of reletive aptima will be:

= ky

View Text Solution

28. If $2x=y^{\frac{1}{3}}+y^{-\frac{1}{3}},$ $(x^2-1)y^{''}+xy'$

29. The velue of $\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+\cos 3x}{2\cos x-1} dx$ is:

30. The lines x+y=0, x-4y=0 and 2x-y=0 are the altitudes of a triangle. If one of the altitudes of a triangle. If one of the vertices has the coordinates $(-\lambda, \lambda)$ and the locus of the centroid of this triangle is ax+by=0 (where a and b are positive intergers and coprime to each other), then the value of (a+2b) is

