

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 68

Mathematics

1. If function g(x) $= x^3 + E^{4x}$ and f(x) = g^{-1} (x), then the value of f'(1) is

A.
$$\frac{1}{4}$$

C.
$$\frac{1}{3+4e^4}$$

D.
$$3 + 4e^4$$

Answer: A

View Text Solution

2. If the normal to the ellipse $3x^2+4y^2=12$ at a point P on it is parallel to the line, 2x+y=4 and the tangent to the ellipse at P. passes through Q(4,4) then PQ is equal to :

A.
$$\frac{\sqrt{221}}{2}$$

$$B. \frac{\sqrt{157}}{2}$$

$$\mathsf{C.}\ \frac{\sqrt{61}}{2}$$

D.
$$5\frac{\sqrt{221}}{2}$$

Answer: D

3. In a circle 20 persons are seated, then the number of ways of selecting 5 persons such that no two persons are consecutive, are

A.
$$^{16}C_{5}$$

B.
$$^{16}C_5 - ^{16}C_3$$

C.
$$^{15}C_5$$

D. None

Answer: B

4. If x + 2 = 6, then x = 4. So, which statement is its converse?

A. If
$$x \neq 4$$
, then $x + 2 \neq 6$

B. If
$$x = 4$$
, then $x + 2 \neq 6$

C. If
$$x = 4$$
, then $x + 2 = 6$

D. If
$$x \neq 4$$
, then $x + 2 = 6$

Answer: C

View Text Solution

5. if
$$A=\left[egin{array}{cc} i & -i \ -i & i \end{array}
ight] ext{ and } B=\left[egin{array}{cc} 1 & -1 \ -1 & 1 \end{array}
ight]$$
 then A^8 equals

A. 64 B

 $\mathsf{B.}-64B$

$$\mathsf{C.}-128B$$

D. 128 B

Answer: D

- **6.** Let two tangents 3x 4y + 20 = 0 and X Y 3 = 0 of a parabola intersect the tangent at vertex at points P (0, 5) and Q (3, 0) respectively, then the length of latus rectum is
 - $\text{A.}\ \frac{12}{\sqrt{34}}$
 - $\text{B.}\ \frac{18}{\sqrt{34}}$
 - $\mathsf{C.} \; \frac{24}{\sqrt{34}}$
 - $\mathrm{D.}\;\sqrt{34}$

Answer: C

7. a tangent to the hyperbole $\frac{X^2}{4} - \frac{y^2}{2} = 1$ meets x-axis at P and y-axis at Q. Lines PR and QR are deawn such that OPRQ is a rectangle (where O is the origin). Then R lies on :

A.
$$\frac{4}{x^2} + \frac{2}{y^2} = 1$$

$$\text{B.} \ \frac{2}{x^2} - \frac{4}{y^2} = 1$$

C.
$$\frac{2}{x^2} + \frac{4}{y^2} = 1$$

D.
$$\frac{4}{x^2} - \frac{2}{y^2} = 1$$

Answer: C

8. If (1+3+5+...+p) r) where +(1+3+5+...+q) = (1+3+5+....+q) each set contains the sum of consecutive odd integers then the smallest possible value of p +q+r

A. 23

B. 21

C. 29

D. 31

Answer: B

9. A key bunch contains 100 keys exactly one of which opens the door. A man tries to open the door by choosing a key random discarding the wrong key after each trial. The probability that the door opens in $25^{\rm th}$ trial is -

- A. $\frac{1}{100}$
- $\mathsf{B.}\;\frac{1}{76}$
- $\mathsf{C.}\;\frac{1}{25}$
- D. $\frac{1}{25}$

Answer: A

10. If f(x) be a differentiable function such that $\frac{d^n}{dx^n}f(x)$

exists $\forall x \in R, n \in N$ and

f'(lpha)=f'(eta)=0, $f"(lpha)\cdot f"(eta)<0$ then which of the following statements can be true

A. points (lpha,f(lpha)),(eta,f(eta)) are local maxima

B. points $(\alpha,f(\alpha)),(\beta,f(\beta))$ are local minima

C. $(\alpha, f(\alpha)), (\beta, f(\beta))$ are points of inflection

D. none of these

Answer: D

$$f(x) = rac{2}{x-3}, g(x) = rac{x-3}{x+4} ext{ and h(x)=-}$$

 $(2(2x+1))/(x^2+x-12')$ then underset(xto 3)lim[f(x)+g(x)+h(x)]` is equal to

- A. -2
- B. -1
- $\mathsf{C.}-rac{2}{7}$
- D. 0

Answer: C

View Text Solution

12. Let $f(x)=xig(x^2+mx+nig)+2$, for all $x\in R$ and

 $m,n\in R.$ If Rolle's theorem holds for f(x) at $x=rac{4}{3}$ in

$$\in [1,2]$$
, then (m+n) equals

B. 2

C. 3

D. 4

Answer: C

13. $\int \frac{e^x}{x+2} \{1 + (x+2)\log(x+2)\} dx$

A.
$$e^x \log(x+2) + C$$

B.
$$\frac{e^x}{x+2}+C$$

$$\mathsf{C.}\,e^x(x+2)+c$$

$$\mathsf{D.}\, e^x(x-2) + c$$

Answer: A

View Text Solution

14. The expression
$$3\left[\sin^4\left(\frac{3\pi}{2}+\alpha\right)+\sin^4((3\pi)+\alpha)\right]$$
 is -2

$$\left[\sin^6\!\left(rac{\pi}{2}+lpha
ight)+\sin^6(5\pi-lpha)
ight]$$
 equal to

A. 0

B. 1

C. 3

D. $\sin 4\alpha + \cos 6\alpha$

Answer: B

15. Find the area lying between the curves

$$y= an x,y=\cot x \ ext{ and } x- ext{axis,} x\in \left[0,rac{\pi}{2}
ight]$$

A. log 2

$$B. \frac{1}{2} \log 2$$

$$\mathsf{C.}\,2\log\!\left(\frac{1}{\sqrt{2}}\right)$$

D. None of these

Answer: A

View Text Solution

16. If $\tan(\pi\cos\theta)=\cot(\pi\sin\theta)$, then $\cos^2\Big(\theta-\frac{\pi}{4}\Big)is$

A.
$$\frac{1}{16}$$

B.
$$\frac{1}{8}$$

C.
$$\frac{1}{4}$$
D. $\frac{1}{2}$

Answer: B

17. The value of
$$\cos^{-1}(\cos 12) - \sin^{-1}(\sin 14)$$
 is

B.
$$8\pi-26$$

C.
$$4\pi+2$$

D. none of these

Answer: B

View Text Solution

18. The standard deviation of 5 scores 1, 2, 3, 4, 5 is

- A. $\frac{2}{5}$ B. $\frac{3}{5}$
- C. $\sqrt{2}$
- D. $\sqrt{3}$

Answer: C

19. The degree of the differential equation satisfying `sqrt(1- x^2)+sqrt(1- y^2)=b(x-y) is

Let $A = \{(xy) : X + y = p\},$

Be

A. 1

В. 3

C. 4

D. 0

Answer: A

20.

$$= \left\{ (x,y)\!:\!x^3 + y^3$$

two sets sch that $A\cap B=\phi$ for any real number p, than the exhastive intervals of p is

B.
$$\{0\}\cup[2,\infty)$$

C.
$$(-\infty, -2] \cup \{0\}$$

D.
$$\{x \, ! x \in N \land x \leq 3\}$$

Answer: B

21. The numerical value of total rational term in the binomial expansion of $\left(5^{\frac{1}{12}}+7^{\frac{1}{18}}\right)^{180}$ is equal to:

22. Let $A=\begin{bmatrix}3&1\\0&2\end{bmatrix}$. If $A^3-5A^2+9A=B$. Find trace of matrix B.

23. Suppose x,y,z>0 and distinct and In x+Iny+Inz=0, if the value of $x^{\frac{1}{\ln y}+\frac{1}{1nz}}.y^{\frac{1}{\ln y}+\frac{1}{1nx}}.z^{\frac{1}{\ln x}+\frac{1}{1ny}}$ is e^{-k} , then k=

24. If a line crosses the yz- plane at (0, 5, 2) and passes through the points (4, 1, a) and (2, b, 2), then find the value of $\frac{10(a^2+b^2)}{3}.$

View Text Solution

25. Let Z be a complex number such that Im(Z)=k and $\frac{Z}{Z+n}=4i$, where K and n are positive integers and $i=\sqrt{-1}$, then the minimum possible value of K will be

View Text Solution

26. If 'oversetxunderset0intf(t)dt=(overset1undersetx intt $^2f(t)dt$)+x $^2af'(1/2)=(2a)/(2a+1')$ then the value os a is :

27. Three circles has radii as 1, 2, and 3 units, centres at A, B and C respectively and touching each other (pair-wise)

externally at D, F and F. Then the circumradius of ΔDEF is :

28. Let
$$y=mx+\lambda_i, i=1,2,3,\ldots n$$
 be a family of n parallel lines ubjected to following conditions.

(i) m being a constant

(ii)
$$\sum_{i=1}^n \lambda_i = 1$$

A variable line through origin intersects the lines at $B(i-1,2,2,\ldots,n)$ and Obser forwarish < 1 < sects

. $If the locus of Q is a stright l \in ewhich passes through a fixed p of (a, b)$ AAn in R,then the value of (a+b)` is

29. For the eqyation $\left|x-2\right|^2+\left|x-2\right|-2=0$, the sum of all real roots will be

