

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 69

Mathematics

1. Let f " (x) =
$$\sec^4 x + 6$$
 and f(0) = f'(0) = 0 then f(x)

is

A.
$$\frac{1}{3}$$
In (sec x) + 1/6tan² x + 3x²

B.
$$\frac{2}{3}$$
In (sec x) + $\frac{1}{3}$ tan² x + $3x^2$

C.
$$-\frac{1}{3}\ln(\cos x) + \frac{1}{3}\tan^2 x + 3x^2$$

D.
$$rac{2}{3}\mathrm{ln}(\sec x)+rac{1}{6} an^2x+3x^2$$

Answer: D

2. The locus of the mid- point of the chords of the ellipse $49x^2+16y^2$ = 784, the tangents at the ends of which intersect on the circle x^2+y^2 = 100 is

A.
$$\left(49x^2+16y^2\right)^2$$

$$=\left(\frac{784}{10}\right)^2\left(x^2-y^2\right)$$

B.
$$\left(49x^2+16y^2\right)=rac{784}{10}$$

C.
$$\left(49x^2+16y^2\right)^2$$

$$=\left(\frac{784}{10}\right)^2\left(x^2+y^2\right)$$

D. None of these

Answer: C

3. A positive integer n is of the form $n=2^{\alpha}3^{\beta}$, where α , β > 1. If n has 12 positive divisors and 2n has 15 positive divisors then number of positive divisors of 6n is

- A. 21
- B. 20
- C. 16
- D. 15

Answer: B

4. If p: "All rational numbers are real numbers" and q: "All real numbers are not complex numbers" then which of the following is correct:

A.
$$p \lor q$$
 = F(false)

B.
$$p \wedge q$$
 = T(true)

C.
$$P
ightarrow q$$
= F(false)

D.
$$p \leftrightarrow q$$
 = T(True)

Answer: C

5. If
$$P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$
, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^T$

then P^TQ^{2005} P is equal to

A. $\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$

B. $\begin{bmatrix} \frac{\sqrt{3}}{2} & 2005 \\ 1 & 0 \end{bmatrix}$

C.
$$\begin{bmatrix} 1 & 0 \\ 1 & 2005 \end{bmatrix}$$
D.
$$\begin{bmatrix} 1 & \frac{\sqrt{3}}{2} & 1 \\ 0 & 2005 \end{bmatrix}$$
Answer: A

6. The straight line joining any point P on the parabola y^2 = 4ax to the vertex and perpendicular from the focus to the tangent at P, intersect at R, then the equation of the locus of R is -

A.
$$x^2+2y^2$$
 - ax = 0

$$\mathsf{B.}\,2x^2+y^2\,\mathsf{-}\,\mathsf{2ax}\,\mathsf{=}\,\mathsf{0}$$

C.
$$2x^2 + 2y^2$$
 - ay = 0

D.
$$2x^2 + y^2$$
 - 2ay = 0

Answer: B

7. Area of the quadrilateral formed with the foci of

$$rac{x^2}{a^2}-rac{y^2}{b^2}=1$$
 and

$$rac{x^2}{a^2} - rac{y^2}{b^2} = \ -1$$
 is

A.
$$4(a^2 + b^2)$$

B.
$$2(a^2+b^2)$$

C.
$$(a^2 + b^2)$$

D.
$$1/2(a^2+b^2)$$

Answer: B

8. If all roots of the equation f (x) = $x^6-12x^5+bx^4+cx^3+dx^2$ are +ex+ 64 = 0 positive, then which has the greatest numerical (absolute) value

A.b

B. c

C. d

D. e

Answer: D

9. Box contains 2 one rupee, 2 five rupee, 2 ten rupee and 2 twenty rupee coin. Two coins are drawn at random simultaneously. The probability that their sum is Rs. 20 or more, is

A. 0.25

B. 0.5

C. 0.75

D. 0.125

Answer: B

10. The equation of normal to the curve $y=2x^3+$

6x + 5, which is parallel to x + 12y + 15 = 0 is

A.

B.
$$x + 12y - 157 = 0$$

$$C. x + 12y - 108 = 0$$

D.
$$x + 12y + 13 = 0$$

Answer: B

11. If f (a) = 3, f' (a) = -2, g (a) = -1,, g' (a) = 4 then

$$\lim_{x o a} rac{g(x)f(a) - g(a)f(x)}{x - a}$$

A. -5

B. 10

C. -10

D. 5

Answer: B

12. If the function f (x) is

$$= \left\{egin{array}{ll} -x & x < 1 \ a + \cos^{-1}(x+b) & 1 \leq x \leq 2 \end{array}
ight.$$

differentiable at x = 1, then $\frac{a}{b}$ is equal to :-

A.
$$\frac{\pi+2}{2}$$

B.
$$\frac{\pi-2}{2}$$

$$\mathsf{C.}\,\frac{-\pi-2}{2}$$

D.
$$-1 - \cos^{-1}(2)$$

Answer: A

13. $\int \frac{3\cos x}{2\cos x + 5\sin x}$ dx is equal to [Note : where

C is integration constant]

A.
$$\dfrac{15}{29}x+\dfrac{6}{29}\mathrm{In}|2\cos x+5\sin x|+C$$

B.
$$\frac{6}{29}x - \frac{15}{29} \ln|2\cos x + 5\sin x| + C$$

C.
$$rac{6}{29}x+rac{15}{29}In|2\cos x+5\sin x|+C$$

D. None of these

Answer: C

14. If x cos
$$\theta = y \cos \left(\theta + \frac{2\pi}{3}\right)$$
, then value of = z

$$\cos$$
 ($heta+rac{4\pi}{3}\Big)xy+yz+zx$ is

- **A.** 1
- B. 0
- C. 2
- D. 3

Answer: B

15. The area bounded by the curve $y^2(2a-x)=x^3$ and the line x = 2 a is

A.
$$3\pi a^2$$
 sq. unit

B.
$$\frac{3\pi a^2}{2}$$
 sq.unit

C.
$$\frac{3\pi a^2}{4}$$

D.
$$\frac{6\pi a^2}{5}$$
 sq. unit

Answer: B

16. If
$$a^{2x}-14a^x+53+||b+3|-4|$$
 where $=|4\cos\theta|$

x , a, b and $\theta \in R$, then the sum of the possible values of bis equal to

- A. 6
- B. 6
- C. 4
- D.-4

Answer: A

17. If the equation

$$\sin^{-1}ig(4x^2-12x+10ig)+\cos^{-1}ig(12x-4x^2-10ig)+$$

lamdax=0 has a real solution, then λ is equal to

A.
$$\frac{\pi}{4}$$

$$B.-\pi$$

C.
$$\frac{\pi}{2}$$

$$D.-\frac{\pi}{2}$$

Answer: B

18. If the standard deviation of the observations

$$-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5$$

is $\sqrt{10}$ then standard deviation for the observations

A.
$$2\sqrt{10}$$

$$\mathrm{B.}\,3\sqrt{10}$$

C.
$$2\sqrt{15}$$

D.
$$3\sqrt{15}$$

Answer: A

19. If y = y(x) and

$$rac{2+\sin x}{(y+1)}rac{dy}{dx}=\ -\cos x, y(0)=1 ext{ then } y\Big(rac{\pi}{2}\Big) ext{ is}$$
 equal to

A.
$$\frac{1}{3}$$
B. $\frac{3}{2}$

$$\mathsf{B.}\;\frac{3}{2}$$

$$\mathsf{C.}\ \frac{1}{4}$$

D.
$$\frac{2}{5}$$

Answer: A

20. Given two real sets

$$A = \{a, a_2, a_3 ... a_{2n}\}$$
 and

$$B=\{b_1,b_2,...b_n\}$$
 . If $\mathsf{f}:A o B$ is a function such

that every element of B has an inverse image and

$$f(a_1) \leq f(a_2) \leq f(a_3) \leq f(a_4)... \leq f(a_{2n}),$$

then the number of such mappings are

A.
$$2n_{C_n}$$

B.
$$2n_{C_{n-1}}$$

C.
$$2n-1_{C_{n-1}}$$

D.
$$2n+1_{C_n}$$

Answer: C

21. Consider,

f (x)

$$\sqrt{rac{\pi}{2}- an^{-1}\sqrt{rac{-x^2}{{(x^2-9)(x-7)}^2(x-9)(x-3)}}}$$

=

and

 a_i are the integral values of x for which f (x) is

defined and

$$a_i < a_i + 1 \, orall i = 1, 2, 8$$
 If the

 Γa_1

matrix A =
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix}$$

 $B^3-pB^2+qB-rI=0$, (where B = adjA), then

$$(2r + p) =$$

22. If $\log_{245} 175 = a, \log_{1715} 875 = b$ then $\frac{1-ab}{a-b}$ =

View Text Solution

23. If the line of intersection of plane

P: 2x + y + z = 2 with xy plane is L_1 ,

with zx plane is L_2 and with yz plane is

 L_3 then the area of triangle formed by

lines L_1, L_2, L_3 is riangle , then the value of $riangle^2$ is

equal to

24. Let $L_1: \frac{x-1}{3} = \frac{y-2}{1} = \frac{z-3}{-3}$ be a line and P: 4x + 3y + 5z = 50 be a plane. L_2 is parallel to

the line $L_1.$ If a plane P containing both the lines

14x - by+ 5z + d = 0 (b,d \in R), then the value of (b-

 L_1 and L_2 are given by the equation

d) is equal to

25. Let z be a complex number i.e

 $z = \cos\theta + i \sin\theta$ which is a root of the equation

$$x^n + p_1^{x^{n-1}} + p_2^{x^{n-2}} + + P_n = 0$$

where i = $\sqrt{-1}$ and $p_1,p_2,p_3.......p_n\in R,$ then

the value of 2 + 7 $(p_1 \sin heta + p_2 \sin 2 heta + p_3 \sin 3 heta$ is

+.....+
$$p_n \sin(n\theta)$$
)

26. Let f be a real-valued function defined on the interval (- 1, 1) such that $f(x).\ e^{-x}=2+f_0^x\sqrt{t^4+1}dt \ \text{for all x}\ \in\ \text{(- 1, 1)}.$

If
$$f^{\,-1}$$
 is the inverse function off, then the value of

 $3(f^{-1}).\ (2)$ is

27. AB is any chord of the circle $x^2+y^2-6x-8y-11$ = 0, which subtend 90° at (1, 2). IF locus of mid-point of AB is circle $x^2+y^2-2ax-2by-c=$ 0, then value of (a + b + c) .

28. The distance of the line 2 x - 3 y = 4 from the point (1, 1) measured along the line x + y = 1 is- (use $\sqrt{2}$ = 1. 41)

29. If α, β, γ are roots of the cubic equation

$$x_3+2x_2+3x+3=0,$$
 then the value of

$$\left(rac{lpha}{lpha+1}
ight)^3+\left(rac{eta}{eta+1}
ight)^3+\left(rac{\gamma}{\gamma+1}
ight)^3=_-$$
 _

