

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR ENGLISH

RELATIONS AND FUNCTIONS

Others

1. The largest interval lying in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which the function $\left[f(x) = 4^{-x} \cdot 2 + \cos^{-1}\left(\frac{x}{2} - 1\right) + \log(\cos x)\right]$ is defined, is (1) $[0, \pi]$ (2) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (3) $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right)$ (4) $\left[0, \frac{\pi}{2}\right)$

Watch Video Solution

2. If the function $f: R \setminus \{0\}^{\rightarrow}$ given by $f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1}$ is continuous at x = 0, then find the value of f(0)

3. Let $f: N \to Y$ be a function defined as f(x) = 4x + 3, where $Y = \{y \in N : y = 4x + 3 \text{ for some } x \in N\}$. Show that f is invertible and its inverse is (1) $g(y) = \frac{3y + 4}{3}$ (2) $g(y) = 4 + \frac{y + 3}{4}$ (3) $g(y) = \frac{y + 3}{4}$ (4) $g(y) = \frac{y - 3}{4}$

View Text Solution

4. Let R be the real line. Consider the following subsets of the plane $R \times R$. $S = \{(x, y) : y = x + 1 and 0 < x < 2\}, T = \{(x, y) : x - y \text{ is an integer }\}$. Which one of the following is true? (1) neither S nor T is an equivalence relation on R (2) both S and T are equivalence relations on R (3) S is an equivalence relation on R but T is not (4) T is an equivalence relation on R but S is not

View Text Solution

5. Consider the following relations: $R = \{(x, y) \mid x, y \text{ are real numbers and } x \}$

= wy for some rational number w}; $S = \left\{ \left(\frac{m}{n}, \frac{p}{q}\right) m, n, pandqa r ei n t e g e r ss u c ht h a tn, q \neq 0 andq m + 0 an$

View Text Solution

6. The domain of the function $f(x) = \frac{1}{\sqrt{|x| - x}}$ is:

- (A) $(-\infty,\infty)$
- (B) $(0,\infty)$
- (C) $(-\infty,0)$

(D) $(-\infty,\infty)$ - $\{0\}$

Watch Video Solution

9. The function
$$f: R - \frac{1}{2}, \frac{1}{2}$$
 defined as $f(x) = \frac{x}{1 + x^2}$, is : Surjective but not injective (2) Neither injective not surjective Invertible (4) Injective but not surjective