©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 70

Mathematics

1. Suppose that f and g are function such that
(i) $g(x)=f^{\prime}(x)$ and
(ii) $f^{\prime}(x)=-f(x)$

If $h(x)=f^{2}(x)+g^{2}(x)$ satisfies $\mathrm{h}(0)=2010$
then the value of $h(\sqrt{\pi})$ is
A. 0
B. 1
C. 2010
D. None of these

Answer: C

D View Text Solution
2. The point at shortest distance from the line
$x+y=7$ and lying on an eillipse $x^{2}+2 y^{2}=6$, has co ordinates
A. $(\sqrt{2}, \sqrt{2})$
B. $(0, \sqrt{3})$
C. $(2,1)$
D. $\left(\sqrt{5}, \frac{1}{\sqrt{2}}\right)$

Answer: C
3. Let x, y, z and w be whole numbers. Then the number of 4 digit numbers xyzw that can be
formed such that $x<y$ and $z>w$ is
A. 1,008
B. 1,296
C. 1,620
D. 2,025

Answer: C

- View Text Solution

4. $\mathrm{p}: 57$ is an odd prime number.
$\mathrm{q}: 8$ is divisor of 24.
r:12 is L.C.M of 5 and 3 are three logical statements, then which one of the following is false?
A. $p \vee(\sim q \wedge r)$
B. $\sim p \vee(q \wedge r)$
C. $(p \wedge) v \sim r$
D. $(p \vee q) \wedge \sim r$

Answer: A
5. IF $\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is to be the square root of
order two unit matrix, then α, β and γ should satisfy the relation
A. $1+\alpha^{2}+\beta \gamma=0$
B. $1-\alpha^{2}-\beta \gamma=0$
C. $1-\alpha^{2}+\beta \gamma=0$
D. $\alpha^{2}+\beta \gamma-1=0$

Answer: D

D View Text Solution

6. The equation of the common tangent to the parabolas $y^{2}=4 a x$ and $x^{2}=4$ by is given by
A. $x a^{1 / 3}+y b^{1 / 3}+a^{2 / 3} b^{2 / 3}=0$
B. $x b^{1 / 3}+y a^{1 / 3}+a^{2 / 3} b^{2 / 3}=0$
C. $x^{1 / 3}+y b^{1 / 3}-a^{2 / 3} b^{2 / 3}=0$
D. None of the

D View Text Solution

7. The range of a such that the line
$\left(\log _{2}\left(1+5 a-a^{2}\right)\right) x-5 y-a^{2}-5$ is $=0$ a
normal to the curve $x y=1$ is
A. $(-\infty, 0)$
B. $(5, \infty)$
C. $(0,5)$
D. None of these

D View Text Solution

8. If $a, b, c \in R^{+}$such that $a+b+c=27$
and maximum value of $a^{2} b^{3} c^{4}=2^{m} \times 3^{n} \mathrm{~m}$,
then the sum of six A.M.'s between m and n is
A. 66
B. 132
C. 120
D. 176

- View Text Solution

9. If 12 identical balls are to be placed randomly in 3 identical boxes, then the probability that one of the boxes contains exactly 3 balls is

$$
\begin{aligned}
& \text { A. } \frac{4}{19} \\
& \text { B. } \frac{55}{3}\left(\frac{2}{3}\right)^{11} \\
& \text { C. } \frac{(428)^{12} C_{3}}{3^{11}}
\end{aligned}
$$

D. $\frac{5}{19}$

Answer: C

D View Text Solution

10. The minimum distance of the curve $y^{2}=2 x^{3}+9-3 x^{2}$ from point $Q(1,0)$ is
A. 2
B. $2 \sqrt{2}$
C. $4 \sqrt{2}$
D. 8

Answer: B

D View Text Solution

11. The value of
$\lim _{x \rightarrow \infty} \arccos \left(\frac{\arcsin \left(\frac{\pi}{x}\right)+\arctan \left(\frac{x}{\pi}\right)}{x \sin \frac{\pi}{x}}\right)$ is equal to
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: A

D View Text Solution

12. Let $f(x)=\max \left\{\cos x, x, x^{2}\right\}$
$-3 \leq \leq 3$ then
A. $f(x)$ is continuous everywhere but not
differentiable at exactly 3 ponts
B. $f(x)$ is continuous everywhere but not differentiable at exactly 2 points
C. $f(x)$ is not differentiable at 4 points
D. None of these

Answer: A

D View Text Solution
13. The value of $\int x^{3} \sqrt{3+5 x^{4}} \mathrm{dx}$ equals

$$
\text { A. } \frac{1}{30}\left(3+5 x^{4}\right)^{3 / 2}+c
$$

B. $\frac{1}{20}\left(3+5 x^{4}\right)^{1 / 2}+c$
C. $\frac{1}{20}\left(3+5 x^{4}\right)^{3 / 2}+c$
D. $\frac{1}{30}\left(3+5 x^{4}\right)^{1 / 2}+c$

Answer: A

D View Text Solution

14. If in a $\triangle A B C, \angle C=90^{\circ}$, then value of $\tan (A-B)$ is
A. $\frac{\left|a^{2}+b^{2}\right|}{2 a b}$
B. $\frac{\left|a^{2}-b^{2}\right|}{2 a b}$
C. $\frac{c^{4}}{2 a b}$
D. $\frac{c a}{2 b}$

Answer: B

D View Text Solution

15. The slope of the tangent to a cruve $y=f(x)$ at $(x, f(x) 0$ is $2 x+1$.If the curve passes through the point $(1,2)$ then the area of
the region bounded by the curve,the x-axis and the lien $x=1$ is

5

A. $\frac{5}{6}$ sq. units
B. $\frac{6}{5}$ sq.units
C. $\frac{1}{6}$ sq. units
D. 6 sq. units

Answer: A
(D) View Text Solution
16. In $\triangle A B C, \angle a=\frac{\pi}{6}$ then the maximum value of $\sin ^{2} B+\sin ^{2} C$ is
A. $\sqrt{3}-1$
B. $1+\frac{\sqrt{3}}{2}$
C. $\frac{3}{2}$
D. $2-\frac{\sqrt{3}}{2}$

Answer: B

D View Text Solution
17. If $\sin ^{-1}\left(\frac{x}{5}\right)+\sec ^{-1}\left(\frac{5}{3}\right)=\frac{\pi}{2}$ tne a value of x is
A. 1
B. 2
C. 3
D. 4

Answer: C

D View Text Solution
18. Find the quartile deviation of daily wages
(in Rs.) of 7 persons given below:

Wages is Rs. 12,7,15,10,17,17,25
A. 14.5
B. 5
C. 9
D. 4.5

Answer: B

D View Text Solution
19. The solution of the curves
$\frac{x d x+y d x}{x d y-y d x}=\sqrt{\frac{1-x^{2}-y^{2}}{x^{2}+y^{2}}}$ are
A. circles passing through the origin
B. parabola
C. circles of radius $\frac{1}{2}$ through the origin
D. not circle

Answer: C

D View Text Solution

20. Let $R=\{(x, y): x, y \in N \quad$ and
 $\left.x^{2}-4 x y+3 y^{2}=0\right\}$ where N is the set of all

natural numbers. Then the relation R is
A. reflexive but neither symmetric nor transitive
B. Symmetric and transitive
C. reflexive and symmetric.
D. reflexive and transitive

Answer: D
21. The sumof the coefficients of even powers
of x in the binomial expansion of
$\left(1+x+x^{2}+x^{3}\right)^{5}$ is

D View Text Solution

22. A is a square matrix of order n
$\mathrm{I}=\mathrm{m}$ maximum number of distinct entries if A is
a triangular matrix,
$m=m a x m u m$ numberof distinct entries if A is a
diagonal matrix,
$p=$ minimum number of zerois if A is a triangular matrix,

If $l-p=2 m-5$, then the order of the matrix is ...

D View Text Solution

23. Let a, b are two integers such that
$a, b \in\{1,2,3,4,5,6$,$\} then the number of$ ordered pairs of (a, b) which satisfy the equation $\left(\frac{a^{x}+b^{x}}{2}\right)^{\frac{2}{x}}=6$ is

- View Text Solution

24. A plane P is perpendicular to the vector
$\vec{A}=2 \hat{i}+3 \hat{j}+6 \hat{k}$ and cotains the point $B(\hat{i}+5 \hat{j}+3 \hat{k})$. Then find square of the pependicular disance from the origin to the plane P.

- View Text Solution

25. In a triangle $A B C 2 \hat{i}+\hat{j}, 5 \hat{i}+\hat{j} \& 2 \hat{i}+7 \hat{j}$ be the position vectors of points $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ respectively. Let $\overrightarrow{A B}, \overrightarrow{A B}$ \& $\overrightarrow{A C}$ are non coplanar vectors. If M is minimum integral value of $(\overrightarrow{A D})^{2}+(\overrightarrow{B D})^{2}+(\overrightarrow{C D})^{2}$ then sum of digits of M is

View Text Solution

26. Let $|z-2-3 i|=1$ and the greatest value of $|z|$ is $r+\sqrt{c}$ then the value of
$\sqrt{r+c+2}$ is

- View Text Solution

27. If $F(a)=\int_{0}^{1} \frac{\sin \left(\pi+\text { Ina }^{x}\right) d x}{x}$ and
$a>0$, then $\left|\lim _{a \rightarrow 1} F^{\prime}(a)\right|=$

- View Text Solution

28. If the minimum distance between the
curves
$y=\cos ^{-1}\left(\frac{\left(x^{2}-4 x+5\right) \sin ^{-1}(1-x)}{\cot ^{-1}\left(\cos ^{-1}(3-x)\right)}\right)$
$\&(x-8)^{2}+(y-\pi)^{2}=1$ is equal to α then the value of $\frac{25}{\alpha}$ is

D View Text Solution

29. The ratio in which the line joining the points $(-1,1)$ and $(5,7)$ is divided by the line $x+y=1$ is $1: \alpha$ then the value of α is.

D View Text Solution
30. Let k are roots of equation $8 x^{3}+1001 x+2008=0$, then the value of $(r+s)^{3}+(s+t)^{3}+(t+r)^{3}$ is 7 k 3 (where k is at ten's place). Then $\mathrm{k}=$

D View Text Solution

