

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 71

Mathematics

1. Let $p(X)=x^5+2x+2019$ and $q=p^{-1}$ denote the inverse function of p. The value of q'(2019) is

A.
$$\frac{1}{2}$$

B. 2

c.
$$\frac{1}{4}$$

D. 4

Answer: A

View Text Solution

2. A straight line PQ touches ellipse
$$rac{x^2}{{(3)}^2}+rac{y^2}{{(1)}^2=1}$$
 and circle $x^2+y^2=4$. RS is a

focal chord of ellipse. If RS is parallel to PQ and RS

meets the circle at points R' and S', then the length
of R'S' is
A. 1 unit
B. 2 unit
C. 3 unit
D. 4 unit
Answer: B
View Text Solution

3. Number of one to one functions from the set

 $X=\{a,b,c\}$ to the set Y={1,2,3,4} is

A. 10

B. 24

C. 30

D. 40

Answer: B

4. For two statements p and q, the compound statement ${ iny ({ iny p} \lor q)} \lor (p \land q)$ is equivalent to

- A. $q \wedge p$
- B. p
- $\mathsf{C}.\,q$
- D. ~q

Answer: B

5. If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 then

A.
$$A^3=9A$$

$$\mathsf{B.}\,A^3=27A$$

$$\mathsf{C.}\,A + A = A^3$$

D. A^4 exists

Answer: A

6. The locus of the foot of perpendicular drawn from focus upon a variable tangent to the parabola

$$(2x-y+1)^2=rac{8}{\sqrt{5}}(x+2y+3)$$
 is

A.
$$3x + y + 4 = 0$$

B.
$$2x - y + 1 = 0$$

C.
$$x + 2y + 3 = 0$$

D. None of these

Answer: C

7. A circle and rectangular hyperbola meet in four points A,B, C and D. If the line AB passes through the centre of the circle. Then the centre of the hyperbola lies at the

A. poit A

B. point B

C. mid point of AB

D. mid poit of CD

Answer: D

8. If
$$b_{n+1}=rac{1}{1-b_n}$$
 of $n\geq 1$ and $b_1=b_3$, then

$$\sum_{r=1}^{2001} b_4^{2001}$$
 is equal to

$$\mathsf{B.}-2001$$

$$\mathsf{C}.\,0$$

D. None of these

Answer: B

9. Probability of n heads in 2n tosses of a fair coin is given by

A.
$$\prod_{r=1}^n \left(rac{2r-1}{2r}
ight)$$

B.
$$\prod_{r=1}^{n} \left(\frac{n+r}{2r} \right)$$

$$\mathsf{C.}\ \sum_{r=0}^n \frac{{}^n C_r}{2^{2n}}$$

D.
$$\frac{\sum_{r=0}^{n} \binom{n}{C_r}^2}{\left(\sum_{0}^{n} \binom{n}{C_r}\right)^2}$$

Answer: A

10. If an equation of a tangent to the curve

$$yh-\cos(x+y),\;-1\leq x\leq 1+\pi$$

is

x + 2y = k then k is equal to

A. 1

B. 2

 $\mathsf{C.}\ \frac{\pi}{4}$

D. $\frac{\pi}{2}$

Answer: D

11. The value of
$$\lim_{ heta op i} \left[rac{\sec^2 heta + 12 \sec heta + 11}{\sec heta + 1}
ight]$$
 is equal to

C. 11

Answer: A

12. If $A,B\in R$ such that the function f(x) is

$$egin{cases} (\pi) & Ifx \in [0,4] \ B an^{-1}rac{2}{x-4} & Ifx \in (4,6) \ \sin^{-1}(7-x) + Arac{\pi}{4} & ext{if} \ \ x \in [6,8] \end{cases}$$

continuous if [0,8] then A^2+B^2 is qual to

A. 1

B. 2

C. 3

D. 4

Answer: B

13.
$$\int \frac{dx}{x^2(x^n+1)^{rac{n-1}{n}}} = -(f(x))^{rac{1}{n}} + C$$
, then f(x)

is

A.
$$1 + x^n$$

B.
$$1 + x^{-n}$$

$$\mathsf{C.}\,x^n+x^{-n}$$

D. None of these

Answer: B

14. let
$$k=\tan^{-1}\!\left(\frac{\sin\!\frac{\pi}{18}+\sin\!\frac{2\pi}{18}}{\cos(\mathrm{pi})/18+\cos\!\frac{2\pi}{18}}\right)$$
 then k

equals

A.
$$\frac{\pi}{8}$$

B.
$$\frac{\pi}{12}$$

$$\operatorname{C.}\frac{\pi}{15}$$

D.
$$\frac{\pi}{4}$$

Answer: B

15. The area bounded by the lines y=2, x=1, x=a and the curve y=f(x), which cuts the lines $x=1, \ x=a$ and above the line y=2 for all $a\geq 1$ is equal to $\frac{2}{3}\Big[(2a)^{3/2}-3a+3-2\sqrt{2}\Big].$ Then f(x)=

A.
$$2\sqrt{2x}, \, x \geq 1$$

B.
$$\sqrt{2x}, x \geq 1$$

$$\mathsf{C.}\,2\sqrt{x}, x\geq 1$$

D. x

Answer: A

16. If $8\cos y=rac{4x^2+4x+7}{x^2+x+1}, x\in R$ then the range of $\sin^2 y+\cos y+1$ is

A.
$$\left[1, \frac{9}{4}\right]$$

$$B. \left[1, \frac{13}{4} \right]$$

$$\mathsf{C.}\left[2,\frac{9}{4}\right)$$

D.
$$\left[3, \frac{13}{4} \right)$$

Answer: C

17. If the equations $x^3 + bx^2 + cx + 1 = 0$, (b < c) has only one rea Then the value root of α . $2 an^{-1}(\cos eclpha)+ an^{-1}(2)+ an^{-1}ig(2\sinlpha\sec^2lphaig)$

A.
$$-\pi$$

is

$$\operatorname{B.}\frac{-\pi}{2}$$

C.
$$\frac{\pi}{2}$$

D. π

Answer: A

18. A data has highest value 120 and lowest value 71. A frequency distribution in descending order with 7 classes to be constructed. The limits of the second class interva can be ..

- A. 71 and 78
- B. 78 and 85
- C. 113 and 120
- D. 106 and 113

Answer: B

19. If
$$(x+y)^2 \frac{dy}{dx} = a^2, y = 0$$
 when $x=0$, then y=a the value of $\frac{x}{a}$ is equal to

A. 2

B. tan 2

 $C. \tan 2 + 1$

D. $\tan 1 - 1$

Answer: D

20. If A and b are any two sets, then $A\cap (A\cap B)$

is equal to

A. A

B.B

 $\operatorname{C.}A^{C}$

 $\mathsf{D}.\,B^C$

Answer: A

21. If the coefficients of 2nd, 3rd and 4th terms in the binomial expansion of $(1+x)^{2n}$ are in A.P., then the value of $2n^2-9n+8$ is

View Text Solution

22. If
$$I = \begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1}$$
,

then

$$= egin{bmatrix} a & -b \ b & lpha \end{bmatrix}$$

$$(a^2 + b^2)$$
 is equal to

23. Consider two real valued functions f(x) & g(x) satisfy the equations

$$g(X)=f(x)-5$$
 and

$$f(x)-f(2-x)=0, x\in R$$
 then

$$g(2) + g(4) + g(6) - g(0) - g(-2) - g(4)$$
 is equal to

24. Let P be a point be a point in the first octant, whose image Q in the pane x+y=3 lies on the z-axis. Let the distance of P from the x-axis be 5. If R

is the image of P in the xy-plane, then the length of

PR is

View Text Solution

25. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non coplanar vector such that

$$\left[\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c},\overrightarrow{c}+\overrightarrow{a}-\overrightarrow{b},2\overrightarrow{a}+\overrightarrow{b}-c
ight]$$

then

$$= k iggl[\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{a} iggr]$$

find the value of k.

26. Supose $z_1,\,z_2,\,z_3$ are vertices of an equilateral triangle in an argand plane inscribed in the circle |z|=2. If $z_1=1-i\sqrt{3},\,z_2=a+ib,\,z_3=c+id$

wher $a,b,c\in R$ and a>c, then |3a+d-c| to

27. Find $\int_0^{100} 3\{\sqrt{x}\}dx$, where {x} denotes the fractional part of x.

28. If the circle $x^2+y^2+2x-2ky+6=0$ and $x^2+y^2+2ky+k=0$ intersects orthogonally, then the positive integral value of k

is

29. The point $P(a^2, a+1)$ lis in the angle between the two given lines,

3x-y+1=0, x+2y-5=0 containing the origin. Find the number of integral values of a.

30. If the first three consecutive terms of a GP are the real roots of the equation $2x^3-19x^2+57x-54=0$ and k is the sum of infinite number of the terms of this G.P . The the value of $\frac{2k}{9}$ is

