© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 72

Mathematics

1. Let $\mathrm{f}(\mathrm{x})$ be a derivable function at $\mathrm{x}=2$ and $\lim _{h \rightarrow 0} \frac{f(2+h)}{\sin h}=3$, then $\frac{f(2)+f^{\prime}(2)}{f(2)-f^{\prime}(2)}$ is equal to
A. 0
B. 1
C. 3
D. -1

- View Text Solution

2.

$(5 x-1)^{2}+(5 y-2)^{2}=\left(\lambda^{2}-4 \lambda+4\right)(3 x+4 y-1)^{2}$
represents an ellipse if $\lambda \in$
A. $(0,1]$
B. $(-1,2)$
C. $(2,3)$
D. $(-1,0)$

Answer: C

3. For any two statements p and q, which of the following is true
A. $\sim(p \leftrightarrow \sim q)$ is a tautology
B. $\sim(p \leftrightarrow \sim q)$ is a contradiction
C. $\sim(p \leftrightarrow \sim q)$ is equivalent to $p \leftrightarrow q$
D. $\sim(p \leftrightarrow \sim q)$ is equivalent to $\sim p \leftrightarrow q$

Answer: C

- View Text Solution

4.

$$
a_{1} x^{3}+b_{1} x^{2}+c_{1} x+d_{1}=0 \text { and } a_{2} x^{3}+b_{2} x^{2}+c_{2} x+d_{2}=0
$$

have a pair of common positive repeated roots. If the value of

$$
\left|\begin{array}{ccc}
3 a_{1} & 2 b_{1} & c_{1} \\
3 a_{2} & 2 b_{2} & c_{2} \\
a_{2} b_{1}-a_{1} b_{2} & c_{1} a_{2}-c_{2} a_{1} & d_{1} a_{2} \\
& -a_{2} d_{2}
\end{array}\right| \text { is }
$$

A. 3
B. 2
C. 1
D. 0

Answer: D

- View Text Solution

$$
\begin{aligned}
& \text { 5. If matrix } A=\left[a_{i j}\right]_{3 \times 3}, B=\left[b_{i j}\right]_{3 \times 3} \text { where } \\
& d_{i j}+a_{j i}=0 \text { and } b_{i j}-b_{j i}=0 \forall i, j \text { then } A^{4} B^{3} \text { is }
\end{aligned}
$$

A. Singular matrix Correct Answer
B. Zero matrix
C. Symmetric matrix
D. Skew symmetric matrix

- View Text Solution

6. Let P a point on $y^{2}=4 x$ such that its focal distance is 4 . Let T be the point of intersection of tangents drawn at P and vertex of the parabola. If S is focus and ' R ' is an interior point on the axis of the parabola at a distance 4 unit from S, then area of quadrilateral PRST is equal to
A. $3 \sqrt{3}$
B. $4 \sqrt{3}$
C. $6 \sqrt{3}$
D. $5 \sqrt{3}$

Answer: C

7. The angle between the asymptotes of a hyperbola is 30°. The eccentricity of the hyperbola is
A. $\sqrt{2} \pm \sqrt{3}$
B. $\sqrt{3} \pm \sqrt{5}$
C. $\sqrt{2 \pm 4 \sqrt{3}}$
D. $\sqrt{7} \pm \sqrt{2}$

Answer: C

- View Text Solution

8. A coin is tossed 7 times, Then probability that at least 4 consecutive heads appear is

$$
\text { A. } \frac{3}{16}
$$

B. $\frac{5}{32}$
C. $\frac{1}{8}$
D. $\frac{1}{4}$

Answer: B

- View Text Solution

9. The slope of the tangent to the curve represented by $x=t^{2}-3 t+1 \& y=2 t^{2}+3 t-4$ at the point $M(-1,10)$ is :
A. 9
B. 10
C. 11
D. 12
10. If \vec{c} is directed along the internal bisector of the angle between the vectors $\quad \vec{a}=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $\vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k} \quad$ with $|\vec{c}|=5 \sqrt{6}$, then \vec{c} is
A. $\frac{5}{3}(\hat{i}-7 \hat{j}+2 \hat{k})$
B. $\frac{5}{3}(5 \hat{i}+5 \hat{j}+2 \hat{k})$
C. $\frac{5}{3}(\hat{i}+7 \hat{j}+2 \hat{k})$
D. $\frac{5}{3}(-5 \hat{i}+5 \hat{j}+2 \hat{k})$

Answer: A

11. If the largest value of the $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{\frac{x}{b}}$ where a, b lies in the interval $\left[\frac{1}{5}, 403\right]$ is e^{λ}, then λ equals
A. 2015
B. 2016
C. 2017
D. 2018

Answer: A

- View Text Solution

12. If Rolle's theorem can be applied to $\mathrm{f}(\mathrm{x})=\mathrm{x} \ln \mathrm{x}, x>0$ in interval $\left[\frac{1}{a}, \frac{1}{b}\right]$ where $a, b \in I^{+}$then b equals
A. 1
B. 2
C. 3
D. infinite possible values exist

Answer: B

- View Text Solution

13. $\int e^{\sec x}\left(\tan ^{2} x+\cos x\right) d x$ is equal to [Note: Where C is a constant of integration]
A. $e^{\sec x} \cdot \sin x+C$
B. $e^{\sec x} \cdot \cos x+C$
C. $e^{\sec x} \cdot \tan x+C$
D. $e^{\sec x} \cdot \cot x+C$
14. The value of $\frac{\sum_{i=1}^{44} \cos \left(i^{\circ}\right)}{\sum_{i=1}^{44} \sin \left(i^{\circ}\right)}-\frac{\sum_{i=1}^{44} \sin \left(i^{\circ}\right)}{\sum_{i=1}^{44} \cos \left(i^{\circ}\right)}$ is equal to
A. 1
B. 2
C. 3
D. 4

Answer: B

- View Text Solution

15. The area bounded by the curve $y=x^{2}+4 x+5$, the axes of co ordinates and the minimum ordinate is
A. $3 \frac{2}{3}$ sq.units
B. $4 \frac{2}{3}$ sq.units
C. $5 \frac{2}{3}$ sq.units
D. $\frac{8}{3}$ sq.units

Answer: B

- View Text Solution

16. The number of solutions of $\sec ^{2} \theta \operatorname{cosec}^{2} \theta+2 \operatorname{cosec}^{2} \theta=8,0 \leq \theta$
is $\leq \pi / 2$
A. 4
B. 3
C. 0
D. 2

- View Text Solution

17.

$f(x)=7 \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)+5 \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)-4 \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ then $\forall x \in(1, \sqrt{3}), f(x)$ is
A. $11 \pi+12 \tan ^{-1} x$
B. $11\left(\pi-\tan ^{-1} x\right)$
C. $11 \pi-12 \tan ^{-1} x$
D. None

Answer: C

18. Let \bar{X} and M.D. be the mean and the mean deviation about \bar{X} of n observations $x_{i} \forall i=1,2,3, \ldots ., n$. If each of the observations is increased by 5 , then the value of new mean and the mean deviation about the new mean respectively, are
A. $\bar{X}+5, M . D$.
B. $\bar{X}+5, M . D .+5$
C. $\bar{X}, M . D .+5$
D. $\bar{X}, M . D$.

Answer: A

- View Text Solution

19. If a curve passing through $(1,2)$ satisfies the differential equation $y(1+x y) d x-x d y=0$, then which of the following is true?

$$
\text { A. } f(x)=\frac{2 x}{2-x^{2}}
$$

B. $f(x)=\frac{x+1}{x^{2}+1}$
C. $f(x)=\frac{x-1}{4-x^{2}}$
D. $f(x)=\frac{4 x}{1-2 x^{2}}$

Answer: A

D View Text Solution

20. Relation R defined in set of real numbers by $R=\left\{(a, b): a \leq b^{3}\right\}$ is
A. Reflexive
B. Symmetric
C. Transitive
D. None of these

- View Text Solution

21. 20 lines are drawn in a plane. No two lines are parallel and no three are concurrent. Find the number of disjoint parts these lines divide the plane into.

- View Text Solution

22. If the minimum value of the function $f(x)=8^{\sin ^{-1} x}+8^{\cos ^{-1} x}$ is m , then the value of $\left(\sec \left(\log _{2} m-1\right)\right)^{8}$ is equal to

- View Text Solution

23. Find the value of n, if the sum of the coefficients of $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ terms in the expansion of $\left(x-\frac{3}{x^{2}}\right)^{n}, x \neq 0 n \in N$ is 559

D View Text Solution

24. Let $\mathrm{f}(\mathrm{x})$ be a function defined as $f: R \rightarrow R$ such that $\mathrm{f}(\mathrm{x}+2)+\mathrm{f}$
$(x-2)=f(a)$ and $f(1)=3$ then the value of the expression $\sum_{r=0}^{15} f(1+12 r)$ is equal to

D View Text Solution

25. OABC is a tetrahedron in with O as the origin and position vectors of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ as $\hat{i}+2 \hat{j}+3 \hat{k}, 2 \hat{i}+\alpha \hat{j}+\hat{k}$ and $\hat{i}+3 \hat{j}+2 \hat{k}$ respectively, then the integral value of α to have shortest distance between $\overrightarrow{O A}$ \& $\overrightarrow{B C}$ as $\sqrt{\frac{3}{2}}$, is
26. Let $z_{1}=10+6 i$ and $z_{2}=4+6 i$. If z is any complex number such that the argument of 1 is, then the value of $\frac{z-z_{1}}{z-z_{2}}$ is $\frac{\pi}{4}$ then the value of $[|z-7-9 i|]$ (where [.] is greatest integer function).

- View Text Solution

27. If Ω_{1} be a circle with centre and diameter $\mathrm{AB} \& \mathrm{P}$ be a point on the segment OB. Suppose another circle Ω_{2} with centre P lies in the interior of 121. Tangents are drawn from A and B to the circle Ω_{2} intersecting Ω_{1} again at A_{1} and B_{1} respectively such that A_{1} and B_{1} are on the opposite sides of AB . Given that $A_{1} B=5, A B_{1}=15$ and $\mathrm{OP}=10$, If r is the radius of Ω_{1} Then $\left[\frac{r}{10}\right]$ equals
28. The equations of altitudes of a triangle are given as $x+y=0, x-$ $4 y=0$ and $2 x-y=0$. If the locus of the centroid of this triangle is $a x$ $+b y=0$ (where a and b are positive integers and coprime to each other) and one of its vertex has the coordinates $(-\lambda, \lambda)$, then the value of $(a+2 b)$ is

(D) View Text Solution

29. The set of values of ' c ' for which the equation: $x^{3}-6 x^{2}+3 x-c$ is of the form $(x-a)^{2}(x-\beta),[\alpha, \beta \in R]$ is $\{\mathrm{a}, \mathrm{b}\}$ then find the value of $a+b$

- View Text Solution

