© 'doubtnut

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 79

Mathematics

1. If $2 x=y^{\frac{1}{3}}+y^{\frac{-1}{3}}$, then the value of $\frac{x^{2}-1}{y} \cdot \frac{d^{2} y}{d x^{2}}+\frac{x}{y} \cdot \frac{d y}{d x}$ is
A. 9
B. 3
C. 18

D. None of these

Answer: A

D View Text Solution

2. If the normal to the ellipes $3 x^{2}+4 y^{2}=12$ at a point P on it is parallel to the line, $2 x+y=4$ and tangent to the ellipse at P passes through $Q(4,4)$ then $P Q$ is equal to
A. $\frac{\sqrt{221}}{2}$
B. $\frac{\sqrt{157}}{2}$
C. $\frac{\sqrt{61}}{2}$
D. $\frac{5 \sqrt{5}}{2}$

Answer: D

- View Text Solution

3. Which of the following is not a proposition ?
A. Please do me a favour
B. 2 is an even integer
C. $2+1=3$

D. The number 17 is prime

Answer: A

- View Text Solution

4.

$D_{k}=\left|\begin{array}{lll}1 & n & n \\ 2 k & n^{2}+n+1 & n^{2}+n \\ 2 k-1 & n^{2} & n^{2}+n+1\end{array}\right| \sum_{k=1}^{n} D_{k}=56$,
then equals to
A. 4
B. 8
C. 6

D. None of these

Answer: D

- View Text Solution

5. Let M be a 3×3 Non-singular matrix with $|M|=\alpha \cdot I f M^{-1} a d j(a d j M)=K I$, then the value of K is
A. 1
B. α
C. α^{2}
D. α^{3}

Answer: D

D View Text Solution

6. The P be the family of parabolas
$y=x^{2}+p x+q(q \neq 0)$ whose graphs cut the axes in three points. The circle passing through these three points will always pass through
A. $(1,0)$
B. $(0,1)$
C. $(1,1)$
D. None of these

Answer: B

- View Text Solution

7. If the cocil of the ellipse
$\frac{x^{2}}{k^{2} a^{2}}+\frac{y^{2}}{a^{2}}=1(k>1)$ and hyperbola $\frac{x^{2}}{a^{2}}$ coincides
$-\frac{y^{2}}{a^{2}}=1$ then $\mathrm{k}=$?
A. $\pm \sqrt{3}$
B. $\pm \sqrt{2}$
C. $\sqrt{3}$
D. $\sqrt{2}$

Answer: C

D View Text Solution

8. The probability that a man can hit a target is $\frac{3}{4}$, he tries 5 times. The probability that he will hit the target at least three times is
A. $\frac{291}{364}$
B. $\frac{371}{464}$
C. $\frac{471}{502}$
D. $\frac{459}{512}$
9. The point on the curve $9 y^{2}=x^{3}$ where normal to the curve makes equal intercept with the coordinate axes is
A. $\left(4, \frac{8}{3}\right)$
B. $\left(8, \frac{64}{3}\right)$
C. $\left(8,-\frac{64}{3}\right)$
D. $\left(2, \frac{2 \sqrt{2}}{3}\right)$

Answer: A
10. Let two non-collinear vectors \vec{a} and \vec{b} inclined at an anlge $\frac{2 \pi}{3}$ be such that
$|\vec{a}|=3$ and $|\vec{b}|=2$.
If a point P moves so that at any time t its positive vector $\overrightarrow{O P}$ (where O is the origin) is given as

$$
\overrightarrow{O P}=\left(t+\frac{1}{t}\right) \vec{a}+\left(t-\frac{1}{t}\right) \vec{b}, \quad \text { then least }
$$

distance of P from the origin is
A. $\sqrt{2 \sqrt{133}-10}$
B. $\sqrt{2 \sqrt{133}+10}$
C. $\sqrt{5+\sqrt{133}}$
D. none of these

Answer: B

- View Text Solution

11. The value of $\lim _{x \rightarrow \infty} \frac{1}{x^{2}} \int_{0}^{x} \ln \left(1+e^{2 t}\right) d t$ equals
A. $\frac{1}{2}$
B. 1
C. 2
D. 4

Answer: B
12. If [x] denotes the integeral part of x and in $(0, \pi)$,
we define
$f(x)\left\{\begin{array}{cl}{\left[\frac{2\left(\sin x-\sin ^{n}\right)+\left|\sin x-\sin ^{n} x\right|}{2\left(\sin x-\sin ^{n} x\right)-\left|\sin x-\sin ^{n} x\right|}\right]} & x \neq \frac{\pi}{2} \\ 3 & x=\frac{\pi}{2}\end{array}\right.$ Then
for $n>1$
A. $f(x)$ is continuous but not differentiable at

$$
x=\frac{\pi}{2}
$$

B. both continuous and differentiable at $x=\frac{\pi}{2}$
C. neither continuous nor differentiable at $x=\frac{\pi}{2}$
D. $\lim _{x \rightarrow \frac{\pi}{2}} f(x)$ exists but $\lim _{x \rightarrow \frac{\pi}{2}} f(x) \neq f\left(\frac{\pi}{2}\right)$

- View Text Solution

13. $\int x^{2 / 3}\left(1+x^{1 / 2}\right)^{\frac{-13}{3}} d x$
A. $\frac{3}{5}\left(1+x^{-1 / 2}\right)^{-10 / 3}+C$
B. $\frac{3}{5}\left(1+x^{1 / 2}\right)^{-\frac{10}{3}}+C$
C. $\frac{\left(1+x^{1 / 2}\right)}{13}+C$
D. None of the above

Answer: A

D View Text Solution
14. Which of the following option represents positive quantity?
A. $\log _{\mathrm{tan} 1} \sin 1$
B. $\cos 1-\sin 1$
C. $\sin 2+\cos 2-\cos 3$
D. $\log _{5} 45-\log _{3} 35$

Answer: C

15. Find the area bounded by the curve
$\frac{y}{\sqrt{1-x^{2}}}=x^{2}$
A. $\frac{\pi}{6}$ sq. units
B. $\frac{\pi}{4}$ sq. units
C. $\frac{\pi}{3}$ sq. units
D. $\frac{\pi}{2}$ sq. units

Answer: B
16. If $\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}+\cos ^{2} \theta_{3}=0$, then which of the following is NOT the poitive value of $\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}$
A. 3
B. -1
C. -2
D. -3

Answer: C
17. The value of $\cos \left(\cos ^{-1} x+\sin ^{-1} x\right) a t x=\frac{1}{3}$ is
A. $\frac{2}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2 \sqrt{2}}{3}$
D. $\frac{-2 \sqrt{2}}{3}$

Answer: D

- View Text Solution

18. If in the given data, the mean of square of deviation about 10 is 25 . The variance of same data is
19. If mean of the data is greater than 10 , then actual mean of data is
A. 10
B. 13
C. 7
D. None of these

Answer: B

D View Text Solution

19. The differential equation of the curve
$\frac{x}{a-1}+\frac{y}{a+1}=1$ is given by

A. $\left(y^{\prime}-1\right)\left(y+x y^{\prime}\right)=2 y^{\prime}$
 B. $\left(y^{\prime}+1\right)\left(y+x y^{\prime}\right)=y^{\prime}$
 C. $\left(y^{\prime}+1\right)\left(y-x y^{\prime}\right)=2 y^{\prime}$

D. None of these

Answer: C

- View Text Solution

20. The Sols of $8 x=6[14]$ are
A. [8], [6]
B. [8], [4]
C. $[6],[13]$
D. [8], [4], [16]

Answer: C

D View Text Solution

21. If $\sum_{r=1}^{100} r .\left({ }^{100} C_{r}\right)^{2}=50 .{ }^{x} C_{100}$, then value of x is

- View Text Solution

22. Number of ways in which from a group of 6 men
$M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6} \& W_{1}, a W_{2}, W_{3}, W_{4}, W_{5}$
committee of 4 people to be formed having atleast 2
women and such that M_{1} and W_{1} are not in the same committee together is μ. Then $\frac{\mu}{10}$ is

D View Text Solution

23.

$g(x)=\left(4 \cos ^{4} x-2 \cos 2 x-\frac{1}{2} \cos 4 x-x^{7}\right)^{\frac{1}{7}}$
then the sum of digits of the value of $g(g(100))$ is equal to
24. The value of
$12 \sum_{r=1}^{\infty} \frac{\left(12 r^{2}+1\right)}{\left(64 r^{6}-48 r^{4}+12 r^{2}-1\right)}$ is :

- View Text Solution

25. In $\triangle A B C$, a point P is chosen on side $\overrightarrow{A B}$ so that $A P: P B=1: 4$ and a point Q is choosen on the side $\overrightarrow{B C}$ so that $C Q: Q B=1: 3$. Segment $\overrightarrow{C P}$ and $\overrightarrow{A Q}$ intersects at M . If the ratio $\frac{M C}{P C}$ is expressed as a rational number in the lowest term as $\frac{a}{b}$, then find $|a-b|$.

View Text Solution

26. If ω imaginary cube root of unity then the value of

$$
\frac{\left|3 \omega-2 \omega^{2}\right||1-\omega|}{\left|3 \omega^{2}-2\right|\left|\omega^{2}-1\right|} \text { is }
$$

D View Text Solution

27. Let $y_{n}=\frac{1}{n}((n+1)(n+2) \ldots(n+n))^{\frac{1}{n}}$ for each positive integer n. If
$\lim _{n \rightarrow \infty} y_{n}=L$, then $[L]=$
(where $[x]$ is the greatest integer less than of equal to
x)

D View Text Solution
28. A vartiable circle always touches the line $x+y-2=0$ at $(1,1)$ and cuts the circle $x^{2}+y^{2}+4 x+5 y-4=0$ at A and B . If the line joining $A B$ always passes through fixed point (α, β), then $\frac{\beta}{\alpha}$ is equal to

D View Text Solution

29. If G is the centroid of $\triangle A B C$ and G^{\prime} is the centroid of the
$\Delta A^{\prime} B^{\prime} C^{\prime}$, and $A A^{\prime}+B B^{\prime}+C C^{\prime}=K G G$,
then K is equal to
30. Find the number of real values of m for which
$A \cup B$ has exactly 3 distinct elements, where A and B are following two sets :

$$
\begin{aligned}
& A=\left\{x: x^{2}+(m-1) x-2(m+1)=0, x \in R\right\} \\
& B=\left\{x:(m-1) x^{2}+m x+1=0, x \in R\right\}
\end{aligned}
$$

