©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 80

Mathematics

1. If f is differentiable and $g(x)=f\left(\frac{1+3 x}{1-5 x}\right)$ for all $x \neq \frac{1}{5}$. If $\mathrm{f}^{\prime}(-1)=2$, then the value of $\mathrm{g}^{\prime}(1)$ is
A. -2
B. -1
C. 0
D. 1

Answer: D

- View Text Solution

2. If tangent and normal at point P (in first quadrant) to ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ intersect major axis at T and N respectively in such a way that ratio of area of $\Delta P T N$ and $\Delta \mathrm{PSS}^{\prime}$ is $\frac{91}{60}$ then area of $\Delta \mathrm{PSS}^{\prime}$ is (S and S^{\prime} are foci)
A. $6 \sqrt{3}$ sq.units
B. $12 \sqrt{3}$ sq.units
C. $4 \sqrt{3}$ sq.units
D. $3 \sqrt{3}$ sq.units

Answer: A

D View Text Solution

3. Statement-1: The type of "OR" used in the proposition "You may have a voter card or a PAN card for your identity proof" is inclusive OR.

Statement - 2: Inclusive OR is said to be used in a proposition if its component statements both may happen together. Then which of the following is correct?
A. Statement -1 is true, Statement - 2 is true, Statement -2 is a correct explanation for Statement -1.
B. Statement -1 is true, Statement -2 is true, Statement -2 is NOT a correct explanation for Statement -1.
C. Statement -1 is true, Statement -2 is false
D. Statement -1 is false, Statement - 2 is true

Answer: A

- View Text Solution

4. The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ has exactly two distinct solutions is
A. Zero
B. One
C. Two
D. None of these

Answer: A

- View Text Solution

5. If $\Delta=\left|\begin{array}{ccc}x^{n} & x^{n+2} & x^{2 n} \\ 1 & x^{p} & p \\ x^{x+5} & x^{p+6} & x^{2 x+5}\end{array}\right|=0$, then p is aqual to
A. x^{n}
B. $(n+1)$
C. either (a) or (b)
D. Both (a) and (b)

Answer: D

- View Text Solution

6. Let P be the point on the parabola, $y^{2}=8 x$ which is at a minimum distance from the center C of the circle $x^{2}+(y+6)^{2}=1$. Then the equation of the circle, passing through C and having its center at P is
A. $x^{2}+y^{2}-\frac{x}{4}+2 y-24=0$
B. $x^{2}+y^{2}-4 x+9 y+18=0$
C. $x^{2}+y^{2}-4 x+8 y+12=0$
D. $x^{2}+y^{2}-x+4 y-12=0$

Answer: C

7. Let LL' be the latus rectum through the focus S of a hyperbola and A be the farther vertex of the conic. If Δ ALL' is equilateral then its eccentricity is
A. $\sqrt{3}$
B. $\sqrt{3}+1$
C. $\frac{(\sqrt{3}+1)}{\sqrt{2}}$
D. $1+\frac{1}{\sqrt{3}}$

Answer: D

- View Text Solution

8. Fifteen coupons are numbered 1,2 15 respectively. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is
A. $\left(\frac{9}{16}\right)^{2}$
B. $\left(\frac{8}{15}\right)^{7}$
C. $\left(\frac{3}{5}\right)^{7}$
D. None of these

Answer: C

- View Text Solution

9. A curve in the co-ordinate plane is given by the parametric equation $x=t^{2}+t+2$ and $y=t^{2}-t+2$ where $t \geq 0$. The number of straight lines passing through the point $(2,2)$ which are tangent to the curve is/are
A. 2
B. 0
C. 1
D. 3

Answer: C

- View Text Solution

10. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors then the roots of equation $[\vec{b} \times \vec{c} \quad \vec{c} \times \vec{a} \quad \vec{a} \times \vec{b}] x^{2}$ and $+\left[\begin{array}{ll}\vec{a}+\vec{b} & \vec{b}+\vec{c} \\ \vec{c}+\vec{a}\end{array}\right] a$
A. real and distinct
B. rational
C. real and equal
D. imaginary

Answer: C

D View Text Solution

11. Let $f: R \rightarrow R$ be a differential function, such that $\mathrm{f}(3)=3$ and $f^{\prime}(3)=\frac{1}{2}$ then $\lim _{x \rightarrow 3}\left(\frac{\int_{3}^{f x} x \cdot t^{2} d t}{x^{2}-9}\right)$ is
A. $\frac{3}{4}$
B. $\frac{9}{4}$
C. $\frac{-9}{4}$
D. $\frac{9}{2}$

Answer: B

- View Text Solution

12. Let $f(x)$ be a continuous function on R and $f(0)=f(2)$, then the equation $f(x)=f(x+1)$ will have :-
A. at least one root in $[0,1]$
B. at most one root in $[0,1]$
C. exactly one root in $[0,1]$
D. no root in $[0,1]$

Answer: A

- View Text Solution

13. If $\int \frac{x^{8}+4}{x^{4}-2 x^{2}+2} d x$ then which of the following is correct
A. $I=\frac{x^{5}}{5}-\frac{2 x^{3}}{3}+2 x+C$
B. $I=\frac{x^{5}}{5}-\frac{2 x^{3}}{3}-2 x+C$
C. $I=\frac{x^{5}}{5}+\frac{2 x^{3}}{3}-2 x+C$
D. $I=\frac{x^{5}}{5}+\frac{2 x^{3}}{3}+2 x+C$

Answer: D

14. The value of $\frac{\cos 68^{\circ}}{\sin 56^{\circ} \cdot \sin 34^{\circ} \cdot \tan 22^{\circ}}$ is equal to
A. 1
B. $\frac{3}{2}$
C. 2
D. 3

Answer: C

- View Text Solution

15. The area above the x-axis enclosed by the curves $x^{2}-y^{2}=0$ and $x^{2}+y-2=0$ is
A. $\frac{5}{3}$
B. $\frac{7}{3}$
C. $\frac{8}{3}$
D. $\frac{10}{3}$

Answer: B

D View Text Solution

16. If $f(x)=\frac{\cos ^{2} x+\sin ^{4} x}{\sin ^{2} x+\cos ^{4} x}$ for $x \in R$ then number of solution of the equation $|\sin x|=f(x)$ in $[-2 \pi, 2 \pi]$ is
A. 2
B. 3
C. 4
D. 5

Answer: C

- View Text Solution

17. Let $a=\left(\sin ^{-1} x\right)^{\sin ^{-1} x}, b=\left(\sin ^{-1} x\right)^{\cos ^{-1} x}, c=\left(\cos ^{-1} x\right)^{\sin ^{-1} x}, \mathrm{~d}$ and if $=\left(\cos ^{-1} x\right)^{\cos ^{-1} x} x \in(0,1)$ then
A. $a>b>d>c$
B. $d>c>a>b$
C. $b>a>d>c$
D. $a>b>d>c$

Answer: B

- View Text Solution

18. The average salary of all the workers in a workshop is Rs. 8000 . Out of them average salary of 7 technicians is Rs. 12000 and of rest of the workers is Rs. 6000. Then the number of workers in the workshop is
A. 20
B. 21
C. 22
D. 23

Answer: B

- View Text Solution

19. If $\mathrm{y}=\mathrm{y}(\mathrm{x})$, satisfy the differential equation $\frac{d y}{d x}=\frac{\sin x+e^{x}}{6 y+2}$ where $y(0)=\frac{4}{3}$, then
A. $8-\cos x+2 y+e^{x}+3 y^{2}=0$
B. $8-\cos x-2 y+e^{x}-3 y^{2}=0$
C. $6-\cos x+2 y+e^{x}+3 y^{2}=0$
D. $6-\cos x-2 y+e^{x}+3 y^{2}=0$

Answer: B

- View Text Solution

20. If $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{3,8\}$, is then $(A \cup B) \times(A \cap B)$
A. $\{(3,1),(3,2),(3,3),(3,8)\}$
B. $\{(1,3),(2,3),(3,3),(8,3)\}$
C. $\{(1,2),(2,2),(3,3),(8,8\}\}$
D. $\{(8,3),(8,2),(8,1),(8,8)\}$

Answer: B

- View Text Solution

21. Coefficient of x^{3} in the expansion of $\sum_{i, j, k \in\{1,2\}}\left(1+x^{i}\right)\left(1+x^{j}\right)\left(1\right.$ is $\left.+x^{k}\right)\left(1+x^{l}\right)$
$i, j, k, l \in\{1,2\}$

D View Text Solution

22. Let $f(n)$ denote the number of different ways in which the positive integer ' n ' can be expressed as the sum of 1 s and 2 s . Note that order of 1 s and $2 s$ should be taken into consideration. If $f(f(6)-5 f(6))-5 f(6)=a b c$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the digits of the number, then the value of $\mathrm{a}+\mathrm{b}+\mathrm{c}=$

- View Text Solution

23. If $|\ln x|=b x$ has exactly 3 distinct solutions then $[b]=$ \qquad (where [.] is greatest integer function)

- View Text Solution

24. $S_{n}=\sum_{r=1}^{n} t_{r}=\frac{n\left(2 n^{2}+9 n+13\right)}{6}$ Find $\sum_{t=1}^{\infty} \frac{1}{r \sqrt{t}_{r}}$

- View Text Solution

25. If the coordinates of the point where the line $x-2 y+z-1=0=x+2 y-2 z-5$ inte the plane $x+y-2 z=7$ is (α, β, γ) then find the value of $(|\alpha|+|\beta|+|\gamma|)$

- View Text Solution

26. Let $\mid z-(1+i)=2 \sqrt{2}$ then the maximum value of $[|z|]$ (Where [.] is greatest integer function)

- View Text Solution

27. Let $f(x)=\lim _{n \rightarrow \infty}\left(\frac{n!}{n^{n}}\right)^{\frac{1}{n}}$, then the value of $\left[e^{2} f(x)\right]$ is (where [.] denotes GIF)

- View Text Solution

28. Three circle touches one another externally. The radius of circles are three consecutive integers. The tangent at their point of contact meet at a point whose distance from a point of contact is 4 . The ratio of radius of largest to smallest circle is

- View Text Solution

29. Find the value of x for which the points $(x,-1),(2,1)$ and $(4,5)$ are collinear

- View Text Solution

30. If it is given that $\sqrt{n}+\sqrt{n+1}<11$ then find the number of positive integers n which are divisible by 3

- View Text Solution

