©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 84

Mathematics

1. The constant term in the expansion of:
$\left(2+5 x+a x^{3}\right)\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{9}$ is 1 . The value of a is:
A. 3
B. 4
C. 5
D. -6

Answer: D

- View Text Solution

2. Which of the following statements has a
A. A quadratic equation has always a real
root
B. The number of ways of seating 2 persons
in two chairs out of n persons is ${ }^{n} P_{2}$
C. The cube roots of unity are in G. P.
D. Two plus three equals five

Answer: A

D View Text Solution
3. Let $A=\left(\begin{array}{lll}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right)$ and
(10) $B=\left(\begin{array}{lll}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right)$, If B is the inverse of matrix A , then α is:
A. 5
B. -1
C. 2
D. -2

Answer: A

4. If $[x]$ denotes the greatest integer less than

 or equal to x, then the value of the determinant$$
\left[\begin{array}{lll}
e & \pi & \pi^{2}-6 \\
\pi & \pi^{2}-6 & e \\
\pi^{2}-6 & e & \pi
\end{array}\right] \text { is }
$$

A. -8
B. 8
C. 0
D. none of these

Answer: A

D View Text Solution

5. if two points P and Q lie on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1(a<b)$, whose centre C be such that $C P$ is perpendicular to $C Q$, then the value of $\frac{1}{C P^{2}}+\frac{1}{C Q^{2}}$ is:
A. $\frac{b^{2}-a^{2}}{2 a b}$
B. $\frac{1}{a^{2}}+\frac{1}{b^{2}}$
C. $\frac{2 a b}{b^{2}-a^{2}}$
D. $\frac{1}{a^{2}}=\frac{1}{b^{2}}$

Answer: D

D View Text Solution

6. If $x^{2}+x+y^{2}-1=0$, where $x>0$ and
$y>0$, then maximum value of $x \sqrt{y}$ is:
A. $\frac{1}{3 \sqrt{2}}$
B. $\frac{1}{2 \sqrt{2}}$
C. $\sqrt{2}$

D. $2 \sqrt{2}$

Answer: B

D View Text Solution

7. Plane is parallel to the vectors $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{k}$ and another plane is parallel to $\hat{i}+\hat{j}$
and $\hat{i}-\hat{j}$ then the acute angle between
$4 \hat{i}-\hat{j}$ and the line of intersection of the two
planes is:

$$
\text { A. } \frac{\cos ^{-1} 1}{\sqrt{2}}
$$

B. $\frac{\cos ^{-1} 3}{\sqrt{34}}$
C. $\frac{\cos ^{-1} 2}{\sqrt{34}}$
D. $\frac{\cos ^{-1} 5}{\sqrt{34}}$

Answer: B

D View Text Solution

8. Let a and c are unit vectors and $|b|=4$ with
$a \times b=2 a \times c$. The angle between a and c is
$\frac{\cos ^{-1} 1}{4}$. If $b-2 c=\lambda$, then λ is equal to
A. $1 / 3,1 / 2$
B. $2 / 3,1 / 3$
C. $3,-4$
D. 2,3

Answer: C

D View Text Solution

9. If $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}-z_{2}\right|^{2}$, where z_{1} and z_{2} are non-zero complex numbers, then
A. $\operatorname{Re}\left(\frac{z_{1}}{z_{2}}\right)=0$
B. $I_{m}=\left(\frac{z_{1}}{z_{2}}\right)=0$
C. $\operatorname{Re}\left(z_{1}+z_{2}\right)=0$
D. none of these

Answer: A

D View Text Solution

10. Let $f(x)$ is a function, defined as:

$$
f(x)= \begin{cases}3 x^{2}+2 x+5 & x>0 \\ 4 & x=0 \\ x^{2}-4 x+3 & x<0\end{cases}
$$

$\lim f(\{x-\sin x\})$
$x \rightarrow 0^{+}$
equals [Note: $\{\bullet\}$ denotes fractional part
function.]
A. 3
B. 4
C. 5
D. None

Answer: C

D View Text Solution
11. The set of points where
$f(x)=(x-1)^{2}(x+|x-1|) \quad$ is thrice
differentiate, is:
A. R
B. $\mathrm{R}-\{0\}$
C. $\mathrm{R}-\{1\}$
D. $R-\{0,1\}$

Answer: C

D View Text Solution
12. A parabola $y=a x^{2}+b x+c$ crosses the x
-axis at $(\alpha, 0),(\beta, 0)$ both to the right of the origin. A circle also passes through these 2 points. The length of tangent from the origin to the circle is:
A. $\sqrt{\frac{b c}{a}}$
B. $a c^{2}$
C. $\frac{b}{a}$
D. $\sqrt{\frac{c}{a}}$

D View Text Solution

13. The value of
$\left(\frac{\cos \pi}{30} \cdot \frac{\cos (3 \pi)}{10} \cdot \frac{\cos (11 \pi)}{30}\right)^{2}$ is equal to
$+\left(\frac{\sin \pi}{30} \cdot \frac{\sin (3 \pi)}{10} \cdot \frac{\sin (11 \pi)}{30}\right)^{2}$
A. $\frac{1}{4}$
B. 1
C. $\frac{1}{16}$
D. $\frac{1}{64}$

Answer: C

D View Text Solution

14. The area enclosed by the curves given by

$$
y=\sqrt{5-x^{2}} \text { and } y=|x-1| \text { is }
$$

A. $\left(\frac{4 \pi}{42}\right)$ sq. unit
B. $\frac{(5 \pi)-1}{4}$ sq. unit
C. $\left(\frac{5 \pi-2}{4}\right)$ sq. unit
D. $\left(\frac{5 \pi}{2}-5\right)$ sq. unit

Answer: C

D View Text Solution

15. If $\cot \left(\frac{\pi}{3} \cos 2 \pi x\right)=\sqrt{3}$, then the general solution of the equation is:

$$
\begin{aligned}
& \text { A. } x=n \pm \frac{1}{2},(n \in I) \\
& \text { B. } x=n \pm \frac{1}{3},(n \in I) \\
& \text { C. } x=n \pm \frac{1}{6},(n \in I) \\
& \text { D. } x=n \pm \frac{1}{4},(n \in I)
\end{aligned}
$$

Answer: C

D View Text Solution

16. The derivative of $\tan ^{-1}\left[\frac{3 x^{2}-1}{3 x-x^{3}}\right]$ with respect to $\sin ^{-1}\left[\frac{x^{2}-1}{x^{2}+1}\right]$ is:
A. $\frac{2}{3}$
B. $-\frac{2}{3}$
C. $\frac{3}{2}$
D. $-\frac{3}{23}$

Answer: C

D View Text Solution

17. The mean of the two-digit numbers which
remains same when the digits interchange
their positions is:
A. 33
B. 44
C. 55
D. 66

- View Text Solution

18. The equation of two sides of a triangle are
$3 x+4 y-12=0,2, x+y-8=0$. If the
circumcentre is $(0,3)$, then the centroid of the triangle is:
A. $\left(0, \frac{7}{3}\right)$
B. $\left(0, \frac{14}{3}\right)$
c. $\left(0, \frac{16}{3}\right)$

D. $(0,6)$

Answer: B

D View Text Solution

19. The curve such that the Intercept on the x axis cut-off between the origin, and the tangent at a point is twice the abscissa and passes through the point $(2,3)$ is:
A. xy =2
B. $x y=3$
C. $x y=6$
D. $x y=1$

Answer: C

D View Text Solution

20. Let $A=[x: x \in R,|x|<1], B \quad$ and
$A \cup B=R-D=[x: x \in R,|x-1| \geq 1]$
then the set D is:
A. $[x: 1<x \leq 2]$
B. $[x: 1 \leq x<2]$
C. $[x: 1 \leq x \leq 2]$
D. None of these

Answer: B

D View Text Solution

21. If $y=a \sin 3 x+6 \cos 3 x$ satisfies
$\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+3 y=10 \cos 3 x$
then find the value of $3(a+6)$.

D View Text Solution

22. A circle has same centre as an ellipse and
passes through the Foci F_{1} and F_{2} of the ellipse, such that the 2 curves intersect in 4 points. Let P be any of their point of intersection. If the major axis of the ellipse is 15 and the area of the triangle $P F_{1} F_{2}$ is $\frac{81}{4}$, then the distance between the foci is k then $\left(\frac{k}{3}\right)$ is:

View Text Solution

23. The number of pairs of diagonals of a regular polygon of 10 sides that are parallel, are:

D View Text Solution

24. If $f(x)=\frac{a x+b}{b x-a}, x \neq \frac{a}{b}, a>0, b>0$ and if $g(x)=f(f(x))+f\left(f\left(\frac{1}{x}\right)\right)$ and
$g:[1, \infty] \rightarrow[2, \infty)$, then the value of x for which $g(x)=\frac{5}{2}$, is:

D View Text Solution

25. If the line $y=m x+c$ is tangent to the circle
$x^{2}+y^{2}=5 r^{2} \quad$ and \quad the parabola
$y^{2}-4 x-2 y+4 \lambda+1=0$ and point of contact of the tangent with the parabola is $(8,5)$, then find the value of
$\left(25 r^{2}+\lambda+2 m-c\right)$

- View Text Solution

26. Let a fair coin be tossed 6 times. A, B and C
three events are defined as

A : exactly 4 heads are obtained.

B : 4th head obtained on 5th toss.

C : tail is obtained, on 2nd or 4th toss
If conditional probability, $P\left(\frac{B}{A \cap C}\right)=\frac{m}{n}$,
where $m, n \in N$ then find the least value of
($\mathrm{n}-\mathrm{m}$)

D View Text Solution
27. If the range of values of V for which $f(x)=\log _{a}\left(4 a x-x^{2}\right)$ is strictly increasing $\forall x \in\left[\frac{3}{2}, 2\right]$ is $(p, q] \cup(r, \infty)$ then the value of $(2 p+4 q+r)$ equals

D View Text Solution

28. If $I_{1}=\int_{0}^{i} \sqrt{1-\sin 2 x} d x \quad$ and
$I_{2}=\int_{0}^{\pi} \sqrt{1+\sin 2 x} d x$ then the value of
$I_{1} \cdot I_{2}=$
29. If $\int \frac{\cos ^{4} x+\sin ^{4} x}{\cos ^{6} x+\sin ^{6} x} d x=f(x)+c$, where $f(0)=0$ then the value of $\left(\frac{4}{\pi} f\left(\frac{\pi}{4}\right)\right)$ is. (where constant of integration)

D View Text Solution

