

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 84

Mathematics

1. The constant term in the expansion of:

$$ig(2+5x+ax^3ig)igg(rac{3x^2}{2}-rac{1}{3x}igg)^9$$
 is 1. The value

of a is:

A. 3

B.4

C. 5

D.-6

Answer: D

View Text Solution

2. Which of the following statements has a truth value of F

A. A quadratic equation has always a real

root

B. The number of ways of seating 2 persons

in two chairs out of n persons is ${}^{n}P_{2}$

C. The cube roots of unity are in G. P.

D. Two plus three equals five

Answer: A

3. Let
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}$$
 and $(10)B = \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix}$, If B is the inverse

of matrix A, then α is:

A. 5

- B. 1
- C. 2
- $\mathsf{D.}-2$

Answer: A

4. If [x] denotes the greatest integer less than or equal to x, then the value of the determinant $\begin{bmatrix} e & \pi & \pi^2 - 6 \\ \pi & \pi^2 - 6 & e \\ \pi^2 - 6 & e & \pi \end{bmatrix}$ is $A_{-} - 8$ **B.**8 C. 0

D. none of these

Answer: A

5. if two points P and Q lie on the hyperbola $rac{x^2}{r^2} - rac{y^2}{r^2} = 1 (a < b)$, whose centre C be such that CP is perpendicular to CQ, then the value of $rac{1}{CP^2}+rac{1}{CQ^2}$ is: A. $\frac{b^2 - a^2}{2ab}$ B. $\frac{1}{a^2} + \frac{1}{b^2}$ C. $\frac{2ab}{b^2 - c^2}$

$$\mathsf{D}.\,\frac{1}{a^2}=\frac{1}{b^2}$$

Answer: D

View Text Solution

6. If $x^2 + x + y^2 - 1 = 0$, where x > 0 and y > 0, then maximum value of $x\sqrt{y}$ is:

A.
$$\frac{1}{3\sqrt{2}}$$

B.
$$\frac{1}{2\sqrt{2}}$$

C.
$$\sqrt{2}$$

D. $2\sqrt{2}$

Answer: B

View Text Solution

7. Plane is parallel to the vectors $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{k}$ and another plane is parallel to $\hat{i} + \hat{j}$ and $\hat{i} - \hat{j}$ then the acute angle between $4\hat{i} - \hat{j}$ and the line of intersection of the two planes is:

A.
$$\frac{\cos^{-1}1}{\sqrt{2}}$$

B.
$$\frac{\cos^{-1} 3}{\sqrt{34}}$$
C.
$$\frac{\cos^{-1} 2}{\sqrt{34}}$$
D.
$$\frac{\cos^{-1} 5}{\sqrt{34}}$$

Answer: B

8. Let a and c are unit vectors and |b| = 4 with $a \times b = 2a \times c$. The angle between a and c is $\frac{\cos^{-1}1}{4}$. If $b - 2c = \lambda$, then λ is equal to

A. 1/3, 1/2

B. 2/3, 1/3

C.3, -4

D. 2,3

Answer: C

View Text Solution

9. If $\left|z_{1}+z_{2} ight|^{2}=\left|z_{1}-z_{2} ight|^{2}$, where z_{1} and z_{2}

are non-zero complex numbers, then

A.
$$Re\left(rac{z_1}{z_2}
ight)=0$$

B. $I_m=\left(rac{z_1}{z_2}
ight)=0$

$$\mathsf{C}.\, Re(z_1+z_2)=0$$

D. none of these

Answer: A

View Text Solution

10. Let f(x) is a function, defined as:

$$f(x) = egin{cases} 3x^2+2x+5 & x>0\ 4 & x=0,\ x^2-4x+3 & x<0 \end{cases}$$
 then

 $\lim_{x o 0^+} f(\{x - \sin x\})$ equals [Note: {•} denotes fractional part function.]

A. 3

B. 4

C. 5

D. None

Answer: C

11. The set of points where $f(x) = (x-1)^2(x+|x-1|)$ is thrice differentiate, is:

A. R

B. R-{0}

C. R-{1}

D. R-{0,1}

Answer: C

12. A parabola $y = ax^2 + bx + c$ crosses the x -axis at $(\alpha, 0), (\beta, 0)$ both to the right of the origin. A circle also passes through these 2 points. The length of tangent from the origin to the circle is:

A.
$$\sqrt{\frac{bc}{a}}$$

B. ac^2
C. $\frac{b}{a}$
D. $\sqrt{\frac{c}{a}}$

Answer: D

A.
$$\frac{1}{4}$$

B. 1

C.
$$\frac{1}{16}$$

D. $\frac{1}{64}$

View Text Solution

14. The area enclosed by the curves given by $y=\sqrt{5-x^2}$ and y=|x-1| is A. $\left(\frac{4\pi}{42}\right)$ sq. unit B. $\frac{(5\pi)-1}{4}$ sq. unit C. $\left(\frac{5\pi-2}{4}\right)$ sq. unit D. $\left(\frac{5\pi}{2}-5\right)$ sq. unit

15. If
$$\cot\left(\frac{\pi}{3}\cos 2\pi x\right) = \sqrt{3}$$
, then the general solution of the equation is:

$$egin{aligned} \mathsf{A}.\,x&=n\pmrac{1}{2},\,(n\in I)\ &\mathsf{B}.\,x&=n\pmrac{1}{3},\,(n\in I)\ &\mathsf{C}.\,x&=n\pmrac{1}{6},\,(n\in I)\ &\mathsf{D}.\,x&=n\pmrac{1}{4},\,(n\in I) \end{aligned}$$

16. The derivative of
$$\tan^{-1}\left[\frac{3x^2-1}{3x-x^3}\right]$$
 with respect to $\sin^{-1}\left[\frac{x^2-1}{x^2+1}\right]$ is:

A.
$$\frac{2}{3}$$

B. $-\frac{2}{3}$
C. $\frac{3}{2}$
D. $-\frac{3}{23}$

17. The mean of the two-digit numbers which remains same when the digits interchange their positions is:

A. 33

B.44

C. 55

D. 66

18. The equation of two sides of a triangle are 3x + 4y - 12 = 0, 2, x + y - 8 = 0. If the circumcentre is (0, 3), then the centroid of the triangle is:

A.
$$\left(0, \frac{7}{3}\right)$$

B. $\left(0, \frac{14}{3}\right)$
C. $\left(0, \frac{16}{3}\right)$

D.(0, 6)

Answer: B

View Text Solution

19. The curve such that the Intercept on the xaxis cut-off between the origin, and the tangent at a point is twice the abscissa and passes through the point (2,3) is:

B. xy=3

C. xy=6

D. xy=1

Answer: C

View Text Solution

20. Let
$$A=[x\!:\!x\in R,|x|<1],B$$
 and $A\cup B=R-D=[x\!:\!x\in R,|x-1|\geq 1]$

then the set D is:

A.
$$[x\!:\!1 < x \leq 2]$$

$$\mathsf{B}.\left[x\!:\!1\leq x<2\right]$$

$$\mathsf{C}.\,[x\!:\!1\leq x\leq 2]$$

D. None of these

Answer: B

21. If
$$y = a \sin 3x + 6 \cos 3x$$
 satisfies

$$rac{d^2y}{dx^2}+4rac{dy}{dx}+3y=10\cos 3x$$

then find the value of 3 (a + 6).

22. A circle has same centre as an ellipse and passes through the Foci F_1 and F_2 of the ellipse, such that the 2 curves intersect in 4 points. Let P be any of their point of intersection. If the major axis of the ellipse is 15 and the area of the triangle PF_1F_2 is $\frac{81}{4}$, then the distance between the foci is k then $\left(\frac{k}{3}\right)$ is:

23. The number of pairs of diagonals of a regular polygon of 10 sides that are parallel, are:

24. If
$$f(x)=rac{ax+b}{bx-a}, x
eq rac{a}{b}, a>0, b>0$$
 and if $g(x)=f(f(x))+f\Big(f\Big(rac{1}{x}\Big)\Big)$ and

 $g\colon [1,\infty] o [2,\infty)$, then the value of x for which $g(x)=rac{5}{2}$, is:

View Text Solution

25. If the line y = mx + c is tangent to the circle $x^2 + y^2 = 5r^2$ and the parabola $y^2 - 4x - 2y + 4\lambda + 1 = 0$ and point of contact of the tangent with the parabola is (8,5), then find the value of $(25r^2 + \lambda + 2m - c)$

26. Let a fair coin be tossed 6 times. A, B and C three events are defined as

- A : exactly 4 heads are obtained.
- B: 4th head obtained on 5th toss.
- C : tail is obtained, on 2nd or 4th toss
- If conditional probability, $P\left(rac{B}{A\cap C}
 ight)=rac{m}{n}$, where $m,n\in N$ then find the least value of (n m)

27. If the range of values of V for which
$$f(x) = \log_a(4ax - x^2)$$
 is strictly increasing $\forall x \in \left[\frac{3}{2}, 2\right]$ is $(p, q] \cup (r, \infty)$ then the value

of (2p + 4q + r) equals

28. If
$$I_1=\int_0^i\sqrt{1-\sin 2x}dx$$
 and $I_2=\int_0^\pi\sqrt{1+\sin 2x}dx$ then the value of $I_1.~I_2$ =

29. If
$$\int \frac{\cos^4 x + \sin^4 x}{\cos^6 x + \sin^6 x} dx = f(x) + c$$
, where $f(0) = 0$ then the value of $\left(\frac{4}{\pi}f\left(\frac{\pi}{4}\right)\right)$ is.....

(where c is constant of integration)