

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 93

Mathematics

1. The remainder when ${(2017)}^{2018} + {(2018)}^{2019} + {(2019)}^{2020}$ is divided by 5 is

A. 0.02

B. 0.04

C. 0.03

Answer: A

View Text Solution

2. The locus of an end of latus rectum of all ellipses having a given major axis, is

A. straight line

B. parabola

C. ellipse

D. circle

Answer: B

verii tila erliation

3. Which of the following given statement is logically equivalent to $(\neg \pi mpliesq)$

A.
$$p \wedge q$$

B.
$$p \wedge { ilde{\hspace{1pt} extstyle -}} q$$

C. ~
$$p \wedge q$$

D. ~
$$p \wedge ~q$$

Answer: D

4. If matrix $A=\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$ where a,b and c are real

positive number abc=1 and $A^TA=I$, then which of the following is true

A.
$$a^3 + b^3 + c^3 = 4$$

B.
$$a^3 + b^3 + c^3 = 3$$

C.
$$a^3 + b^3 + c^3 = 6$$

D.
$$a^3 + b^3 + c^3 = 0$$

Answer: A

 $f{:}R o R, f(x)=rac{\sin([x]\pi)}{x^2+2x+3}+2x-1+\sqrt{x(x-1)+rac{1}{4}}$

where [x] denote greatest intergral value less than or equal to x) denotes a function, then number of real solutions of equation $f(x) = f^{-1}(x)$ is

B. 1

C. 2

D. 3

Answer: B

6. α,β be the roots of $x^2-3x+a=0$ and γ,δ be the roots of $x^2-12x+b=0$ and numbers $\alpha,\beta,\gamma,\delta$ (in order) form an increasing G.P. then

A.
$$a = 3, b = 12$$

B.
$$a = 12, b = 3$$

C.
$$a = 2, b = 32$$

D.
$$a = 4, b = 16$$

Answer: C

View Text Solution

7. A dice is trhown three times if getting a composite face considering as a success then men and variance of the

probability distribution of number of success are

A.
$$1, \frac{2}{-}$$

B.
$$\frac{1}{2}$$
, $\frac{5}{12}$

C. 2,
$$\frac{3}{2}$$

D. None of these

Answer: A

View Text Solution

8. The length of perpendicular from orign to the plane $r.\left(3\hat{i}-4\hat{j}+12\hat{k}
ight)=5$ is

A.
$$5/13$$

$$\mathsf{B.}\,5/4$$

 $\mathsf{C.}\,5/12$

D. 5/11

Answer: A

View Text Solution

9. The range of a such that theline $\left(\log_2\left(1+5a-a^2\right)\right)x-5y-a^2-5=0$ is a normal to the curve xy=1 is

A.
$$(-\infty,0)$$

B. $(5, \infty)$

C.(0,5)

D. None of these

Answer: C

View Text Solution

10. If z lies on the circle $|z-2i|=2\sqrt{2}$, then the value of arg $\left\lceil \frac{z-2}{z+2} \right
ceil$ is equal to

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{6}$
- D. $\frac{\pi}{2}$

Answer: B

11.
$$\lim_{x o 0} rac{\left(1+x
ight)^{rac{1}{x}}-e+rac{ex}{2}}{x^2}$$
 equals

A.
$$\frac{11e}{24}$$

$$\mathsf{B.} \; \frac{-11e}{24}$$

$$\operatorname{C.}\frac{e}{24}$$

D. None of these

Answer: A

View Text Solution

12. $f(x) = \sin | x + .$ f(x) is not differentiable at

A. x=0 only

B. all x

C. multiples of π

D. multiples of $\frac{\pi}{2}$

Answer: C

View Text Solution

13.
$$\int \!\! rac{e^x}{x+2} \{1+(x+2){
m log}_e(x+2)\} dx$$

A.
$$e^x \log_e(x+2) + C$$

$$\mathsf{B.}\,\frac{e^x}{x+2}+C$$

C.
$$e^{x}(x+2) + C$$

$$\mathsf{D}.\,e^x(x-2)+C$$

Answer: A

14. From origin chord of contact AB is drawn (point A and B lie on the circle) to the circle

 $x^2 + y^2 - 4x - 6y + 1 = 0$. Then the equation of circle passing through A and B and also passes through origin is

A.
$$x^2 + y^2 - 4x - 6y = 0$$

$$B. x^2 + y^2 + 2x + 3y = 0$$

$$\mathsf{C.}\,x^2 + u^2 + 4x - 6u = 0$$

D.
$$x^2 + y^2 - 2x - 3y = 0$$

Answer: D

15. Consider the curves $y=\sqrt{x}, 2y+3=x.$ The value of the area bounded by the given curves and the x-axi in the 1st quadrant is

- A. 18
- B. $\frac{27}{4}$
- C. 36
- D. 9

Answer: D

View Text Solution

16. If $heta = \sin^{-1} x + \cos^{-1} x - \tan^{-1} x, 1 \leq x, < \infty$

Then the smallest interval in which θ lies is

A.
$$\dfrac{\pi}{2} \leq heta \leq \dfrac{3\pi}{4}$$

$$\texttt{B.}\, 0 \leq \theta \leq \frac{\pi}{4}$$

$$\mathsf{C.} - \frac{\pi}{4} \leq \theta \leq 0$$

D.
$$rac{\pi}{4} \leq heta \leq rac{\pi}{2}$$

Answer: B

View Text Solution

17. Mean of 50 observations is calculated to be 4.04 when

Mr. X took by mistake 10 instead of 8 for an observation.

Then the correct mean would be

A. 4.08

B. 3.95

C. 4.01

D. 4

Answer: D

View Text Solution

18. Let A(-2,2) and B(2,-2) be two points. P is a variable point such that area of ΔPAB is 8 then locus of P is

A.
$$x + y = \pm 1$$

$$\mathsf{B.}\,x+y=\ \pm\ 2$$

$$\mathsf{C.}\,x+y=\ \pm\ 3$$

$$\mathsf{D.}\,x+y=\ \pm\ 4$$

Answer: D

View Text Solution

19. If $\dfrac{dy}{dx}=\dfrac{x^2+y^2+1}{2xy}$ and y(2)=0 then the value of y(-2) equals

A.
$$\sqrt{6}$$

B.
$$\sqrt{2}$$

Answer: A

20. The product of two of of the four roots of the equation $x^4-18x^3+kx^2+200x-1984=0$ is -32, then the value of k is

- **A.** 76
- B. 96
- C. 86
- D. 66

Answer: C

$$u = \cos^{-1}(4x^3 - 3x)$$

$$v= an^{-1}igg(rac{\sqrt{1-x^2}}{x}igg), rac{1}{2} < x < 1$$
, find $rac{du}{dv}$

View Text Solution

22. A pen costs Rs. 11 and a notebook costs Rs. 13. the number of ways in which a person can spend exactly Rs. 1000 to buy pens and notebooks is

View Text Solution

23. If A be a 3×3 matrix satisfying

$$Aegin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} = egin{bmatrix} -1 \ 2 \ 3 \end{bmatrix}, Aegin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} = egin{bmatrix} 1 \ 1 \ -1 \end{bmatrix}$$

and $A egin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = egin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix}$ then find tr(A)

24. If P,Q,R,S are the 4 points of intersection of the circle
$$x^2+y^2-6x-4y-3=0$$
 with the curve $y=\frac{2x+10}{x-3}$

with center as C, then the value of
$$(CP)^2 + (CQ)^2 + (CR)^2 + (CS)^2$$
 is k, then $rac{k}{8} =$

25. For how many integer values of
$$\lambda$$
 the vectors $\vec{a}=(2\lambda)\hat{i}+(\lambda)\hat{j}+(\lambda)\hat{k}$ and $\vec{b}=3\hat{i}-\hat{j}+(1-\lambda)\hat{k}$

include an acute angle

26. The value of $\int_0^2 \left(\sqrt{1+x^3}\right) + \left(\sqrt[3]{x^2+2x}\right) dx$ is equal to

View Text Solution

27. If $an^2 heta = 2 an^2 \phi + 1$, then find the value of $\cos 2\theta + \sin^2 \phi$

View Text Solution

Consider 28. the equation $\log_{\sqrt{2}\sin x}(1+\cos x)=2, x\in \left|\,-rac{\pi}{2},rac{3\pi}{2}
ight|$ if the sum of the roots is $rac{p\pi}{a}$, where GCD(p,q)=1 then evaluate p^2+q^2

29. What is the number of elements in the set $ig\{(a,b)\!:\!a^2+b^2=50,\,a,\,b,\,\in Zig\}$ where Zis the set of integers.

