

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 94

1. A cubic polynomial $f(x) = x^3 + px^2 + qx + 72$ is divisible by both $x^2 + ax + b$ and $x^2 + bx + a$ (where a,b, p,q are constants and $a \neq b$), then the sum of the squares of roots of the cubic polynomial is:

2. The two consecutive terms in the expansion of $\left(3+2x
ight)^{74}$ whose coefficients are equal, is/are

A. 30th and 31st terms

- B. 29th and 30th terms
- C. 31st and 32nd terms
- D. 28th and 29th terms

Answer: A

View Text Solution

3. If a circle of radius r is concentric with ellipse

 $rac{x^2}{a^2}+rac{y^2}{b^2}=1$, then the common tangent is inclined to major axis at an angle

A.
$$\tan^{-1} \sqrt{\frac{r^2 b^2}{a^2 - r^2}}$$

B. $\tan^{-1} \sqrt{\frac{r^2 - a^2}{b^2 - r^2}}$
C. $\tan^{-1} \sqrt{\frac{r^2 - b^2}{r^2 - a^2}}$
D. $\tan^{-1} \sqrt{\frac{r^2 - a^2}{r^2 - b^2}}$

Answer: A

4. If two statements are given as p : Ram is smart, q : Ram is intelligent Then, the symbolic form of Ram is smart and intelligent, is:

A. $(p \land q)$ B. $(p \lor q)$ C. $(p \land \neg q)$ D. $(p \lor \neg q)$

Answer: A

View Text Solution

5. If $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{3 imes 3}$, such that $a_{ij} = \begin{vmatrix} 2 & i = j \\ 0 & i
eq j \end{vmatrix}$, then $\log_{rac{1}{2}} \left(|A|^{\operatorname{adj} A}
ight) + 1$

is equal to:

A. - 191

B. 193

C. -23

D. 25

Answer: A

View Text Solution

6. If $\log_{175}(5x) = \log_{243} 7x$, then the value of $\log_{42}(x^4 - 2x^2 + 7)$ is equal to:

A. 1

B. 2

C. 3

D. 4

Answer: A

7. In an infinite progression, each term equal to the 3 times of sum of next all terms. Then the common ratio of the G.P. Is:

A.
$$\frac{1}{2}$$

B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{2}{3}$

Answer: C

View Text Solution

8. From a pack of 52 cards two cards are drawn at random. The probability

of both cards being spade is:

A.
$$\frac{1}{17}$$

B.
$$\frac{2}{17}$$

C. $\frac{3}{17}$
D. $\frac{1}{15}$

Answer: A

View Text Solution

9. The line
$$rac{x-3}{2} = rac{y-4}{5} = rac{z-6}{7}$$

A. lies in 3x + 5y + 2z - 6 = 0

B. is parallel to 2x - by + 3z = 9

C. is perpendicular to 2x-5y + 3z - 9 = 0

D. passing through (2,3,5)

Answer: B

10. Let
$$f(x)=2x+\cot^{-1}x+\ln\Bigl(\sqrt{1+x^2}-x\Bigr)$$
 . Then f(x)

A. increases in
$$(\,-\infty,\infty)$$

B. decreases in $(-\infty,\infty)$

C. neither increases nor decreases in $(0,\infty)$

D. increases as well as decreases in $(\,-\infty,\infty)$

Answer: A

View Text Solution

11. Let z_1 and z_2 are two complex numbers such that $|z_1|=|z_2|$ and $arg(z_1)+rg(z_2)=\pi,$ then z_1 equals to:

A. z_2

 $B.-z_2$

 $\mathsf{C}.\,\overline{z_2}$

 $\mathsf{D.}-\overline{z_2}$

Answer: D

12.
$$\lim_{x \to 1} \frac{1 - \cos(4\cos^{-1}x)}{1 - x^2}$$
 is equal to:
A. 4
B. 8
C. 16
D. 32

Answer: B

View Text Solution

13. If $f(x) = \begin{vmatrix} rac{1-|x|}{1+x} & x
eq -1 \\ 1 & x = -1 \end{vmatrix}$, then the value of f(|2k|) will be (where

[•] shows the greatest integer function]

A. continuous at x = -1

B. continuous at x = 0

C. discontinuous at
$$x=rac{1}{2}$$

D. all of these

Answer: D

View Text Solution

14.
$$\int \frac{dx}{\cos x - \sin x} \text{ is equal to:}$$
A.
$$\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} - \frac{3\pi}{8} \right) \right| + C$$
B.
$$\frac{1}{\sqrt{2}} \log \left| \cot \left(\frac{x}{2} \right) \right| + C$$
C.
$$\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} - \frac{\pi}{8} \right) \right| + C$$
D.
$$\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} \right) + \frac{3\pi}{8} \right| + C$$

Answer: D

15. Find the equation of the circle whose center lies on Zx + 4y = 7 and which passes through the points (1, -2) and (4, -3).

A.
$$15(x^2 + y^2) - 90x18y + 50 = 0$$

B. $x^2 + y^2 - 94x + 18y + 55 = 0$
C. $15(x^2 + y^2) - 94x + 18y + 55 = 0$
D. $15(x^2 + y^2) + 94x + 18y + 55 = 0$

Answer: C

View Text Solution

16. The area of the region for which $0 < y < 3 - 2x - x^2$ and x > 0 is:

A.
$$\frac{5}{3}$$

B. 3
C. $\frac{13}{3}$

Answer: A

View Text Solution

17.

$$5\cos^{-1}\left(rac{1-x^2}{1+x^2}
ight) + 7\sin^{-1}\left(rac{2x}{1+x^2}
ight) - 4\tan^{-1}\left(rac{2x}{1-x^2}
ight) - \tan^{-1}x =$$

, then x is equal to,

A.
$$-\sqrt{3}$$

 $\mathsf{B.}\,\sqrt{2}$

C. 2

D. $\sqrt{3}$

Answer: D

18. If the price of three items of furniture is in the ratio of 3:5:7 and the average price of the items of furniture is Rs 15000, then the price of the cheapest item is:

A. Rs 9000

B. Rs 15000

C. Rs 18000

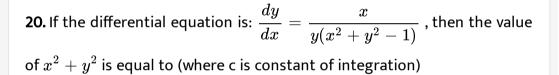
D. Rs 21000

Answer: A

View Text Solution

19. The maximum area of the triangle formed by joining the points $(1, \sqrt{3}), (-1, -\sqrt{3})$ and $(2\cos\theta, 2\sin\theta)$ is:

A. 2


B. 4

C. 8

D. $4\sqrt{3}$

Answer: B

A. ce^{x^2} B. ce^{y^2}

C. ce^{-x^2}

D. ce^{-y^2}

Answer: B

21. The roots of the given equation: $(p-q)x^2 + (q-r)x + (r-p) = 0$

are

A.
$$\displaystyle rac{p-q}{r-p}, 1$$

B. $\displaystyle rac{q-r}{p-q}, 1$
C. $\displaystyle rac{r-p}{p-q}, 1$

D. None of these

Answer: C

View Text Solution

22. Let
$$F(x) = \int_0^{x^2 + \frac{a}{3}} 2\cos^2 t dt, x \in R \text{ and } f: \left[0, \frac{1}{2}\right] \to [0, \infty)$$
 be a continuous function. For $a \in \left[0, \frac{1}{2}\right]$, If $F'(a) + 2$ is the area of the

region bounded by y=f(x), x=0, y=0 and x=a, then find f(0).

23. If number of straight line formed by 10 points (no three of them are

collinear) =
$$\sum_{r=0}^{m-3} {}^{m}C_{r} {}^{m}C_{r+3}$$
 then value of $\frac{1}{m}$ is equal to:
View Text Solution

24. If the system of equations x + ay = 0, az + y = 0, ax + z = 0 and has infinitely many solutions for real some value of a and $a = (\lambda - 4)$ then the value of λ is:

View Text Solution

25. P is a point on the parabola whose ordinate equal to its abscissa. A normal is drawn to the parabola at P to meet it again at Q. If S is the focus of the parabola, then find the product of the slopes of SP and SQ.

26. A line passing through the origin meets the circle $x^2 + y^2 = a^2$ and the hyperbola $x^2 - y^2 = a^2$ at Pand Q respectively. Then locus of the point of intersections of tangent to the circle at P with the tangent at Q to the hyperbola is the curve given by the equation $(a^4 + 4y^4)x^2 = a^k$ then the value of k is equal to:

View Text Solution

27. A vector $(a\hat{i} + b\hat{j} + c\hat{k})$ is rotated through a certain angle about the origin in the anti-clockwise direction. If the new vector obtained is: $(a-1)\hat{k} + (b-1)\hat{j} + (c-1)\hat{k}$, then find the value of: 2(a+b+c)

View Text Solution

28. Let I(n) = $\int_{1}^{e} x^{3}$, $(\ln x) dx$, where $n \in N$. Find the value of In(4I(5) + 5I(4))

29. If sin A + cos A = m and $\sin^3 A + \cos^3 A = n$, then evaluate $m^3 - 3m + 2n$

View Text Solution

30. $0 \leq x_1 < x_2 < \pi$ satisfy

 $1+\sin x+\sin^2 x+\ldots$. $X=4+2\sqrt{3}$. Find $|[x_1-x_2]|$ (where [•]

represents greatest integer function.)

View Text Solution

31. If $n(A) = 10, n(A \cap B) = 4$, then how many elements are in $(A \cap B)' \cap A$