

MATHS

BOOKS - NTA MOCK TESTS

NTA TPC JEE MAIN TEST 98

Mathematics Single Choice

1. For |x| < 1, the coefficient of the term independent of x in

the expansion of $rac{1}{\left(x-1
ight)^2 \left(x-2
ight)}$ is _____

A. 2

B. 1

C. 0

$$\mathsf{D.}-rac{1}{2}$$

Answer: D

2. If latus rectum of the ellipse $x^2 an^2 lpha + y^2 \sec^2 lpha = 1$ is $rac{1}{2}$

then

 $lpha(0<lpha<\pi/3)$ is equal to

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{12}$
C. $\frac{\pi}{43}$
D. $\frac{\pi}{4}$

Answer: B

3. Which of the following is FALSE for any two statements p and q ?

A. ~
$$[p \lor (\ extsf{-}q)] = (\ extsf{-}p) \land q$$

C. $q \wedge \mathsf{\sim} q$ is a contradiction

D. ~
$$(p \land (~p))$$
 is a tautology

Answer: B

4. If A =
$$\begin{bmatrix} 1 \\ \log_a b \\ 1 \end{bmatrix}$$
. then $|A|$ is equal to

A. 1

B. 0

 $\mathsf{C}.\log_a b$

 $\mathsf{D}.\log_b a$

Answer: B

View Text Solution

5. If
$$f(x) = (p^2 - 1) [\tan^{-1} x] + 4(q^2 + 2q - 3) \left\{ \frac{1}{2 + x^2} \right\}$$

+ (p+q) sgn $(x^2 - x + 2)$ is continuous in R and
 $f(x_1) = f(x_2) \forall x_1, x_2 \in R$, then largest value of $|p + q|$ is
[Note : sgn (y),[y] and {y} denote signum function, greatest
integer function and fractional part function respectively.]

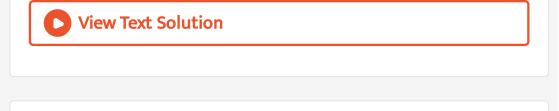
B. 2

C. 4

D. 5

Answer: C

6. What is the decimal equivalent of binary number 10101


A. 20

B. 21

C. 22

D. 23

Answer: B

7. If a,b,c are real numbers forming an A.P. and 2+a,3+b,2+c are

in G.P., then minimum value of ac is

A. 4 B. 5 C. 6 D. 8

8. A car is parked by an owner amongst 25 cars in a row not at the two extremes. On his return,he find that exactly 15 places are still

occupied. The probability that both the nelghbouring places are vacant is

A.
$$\frac{15}{92}$$

B. $\frac{91}{276}$
C. $\frac{15}{184}$

D. None of these

9. If θ is the angle between the line $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ and the plane $2x - y + \sqrt{\lambda}z + 4 = 0$ such that $\cos \theta = \frac{1}{3}$, then λ is equal

to

A.
$$\frac{5}{3}$$

B. $\frac{5}{2}$
C. $\frac{5}{4}$
D. $\frac{3}{2}$

10. Let f: R
ightarrow R be a function defined by

f(x)= $-x^3-3x^2-6x+1$. Number of integers in the solution set of x satisfying the inequality

 $fig(fig(x^3+f(x)ig)ig)$ is $\ \ge fig(fig(-f(x)-x^3ig)ig)$

A. 3

B. 4

C. 5

D. 6

11. $lpha \,\, {
m and} \,\, eta$ are cube roots of unity. Then $lpha^4 + eta^4 + lpha^{-1}eta^{-1}$

is equal to

A. 1

B. 0

 $\mathsf{C}.-1$

D. None of these

Answer: B

View Text Solution

12. If f (n) denotes the n^{th} term of the sequence 3,9,19,33,

And g(n) denotes the n^{th} term of the sequence

3,7,13,21,..... Then
$$\lim_{n o\infty}rac{f(n)}{g(n)}$$
 is equal to

A. 0

B. 1

C. 2

D. ∞

Answer: C

D View Text Solution

13. If
$$f(x) = ae^{|x|} + b|x|^2$$
. where a,b \in R and f (x) is

derivable at x = 0. then

A. a=0,b ∈ R B. a=1,b=2

C. b=0,a \in R

D. a=4,b=5

Answer: A

14.
$$\int \frac{dx}{\cos x + \sqrt{3}\sin x}$$
 is equal to
A.
$$\log \left| \tan \left(\frac{x}{2} + \frac{\pi}{12} \right) \right| + C$$

B.
$$\log \left| \tan \left(\frac{x}{2} - \frac{\pi}{12} \right) \right| + C$$

C.
$$\frac{1}{2} \log \left| \tan \left(\frac{x}{2} + \frac{\pi}{12} \right) \right| + C$$

D.
$$\frac{1}{2} \log \left| \tan \left(\frac{x}{2} - \frac{\pi}{12} \right) \right| + C$$

Answer: C

15. The locus of the centres of the circles which cut the circles $x^2+y^2+4x-6y+9=0$ and $x^2+y^2-5x+4y-2=0$ orthogonally is .

A. 9x+10y-7=0

B. x-y+2=0

C. 9x-10y+11=0

D. 9x+10y+7=0

Answer: C

16. The line x=0 divides the area enclosed by the curves

|x-1|-y=0.

|x|+y-3=0 into two areas R_1 and R_2 where $R_1 < R_2$ Then the ratio of $R_1\,$ and $\,R_2$ is

A. 1:2

B.1:4

C. 1: $\sqrt{2} + 1$

D. 1:3

Answer: D

View Text Solution

17. If the following numbers 13,15,11,6,4,2,18,8 are present in a data set. The median of the given set is -

B. 8.5

C. 9.5

D. 11.5

Answer: C

18. In what direction a line be drawn through the point (1,2) . So that its point of intersection

with the line x+y=4 is at a distance $\sqrt{6}/3$ from the given point

?

A. 30°

B. 45°

 $\mathsf{C.}\,60^\circ$

Answer: D

View Text Solution

19. If the equation in X given by
$$\left(2\left(\frac{1}{\cos^{-1}x}\right)^{2\pi}\right)$$

 $-\left(a+\frac{1}{2}\right)\left(2\left(\frac{1}{\cos^{-1}}\right)\right)^{\pi}-a^{2}=0$

has only one real solution then exhaustive set of values of 'a' is

B.
$$(\,-\infty,\,-3]\cup[1,\infty)$$

C. $(\,-\infty,\,-3)\cup(1,\infty)$

D. [-3, ∞)

Answer: B

20. For every natural number n,n $\left(n^2-1 ight)$ is divisible by

A. 4

B. 6

C. 10

D. None of these

Answer: B

Mathematics Subjective Numerical

1. If
$$y = \tan^{-1}\left(\frac{1}{x^2 + x + 1}\right) + \tan^{-1}\left(\frac{1}{x^2 + 3x + 3}\right)$$

 $+ \tan^{-1}\left(\frac{1}{x^2 + 5x + 7}\right)$. $x > 0$ and $+ \tan^{-1}\left(\frac{1}{x^2 + 7x + 13}\right)$
 $\left(\frac{dy}{dx}\right)_{x=0} = \frac{-k}{1+k}$ find the value of k.

View Text Solution

2. Let n=27. Let the number of ways of selecting three numbers

from 1,2,3,.....,n in A.P. be p^2 then find p

3. If A is an idempotent matrix satisfying
$$(I - 0.4A)^{-1} = (I - \alpha A)$$
 (where I is the unit matrix of same order as that of A, A is not a null matrix). Than $\frac{1}{\alpha}$ is

4. Let P(6,3) be a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2}$ =1. If the normal at the point P intersects the x- axis at (12,0). Find the eccentricity of the hyperbola. ($\sqrt{2} = 1.41$)

View Text Solution

5. If
$$\left|\overrightarrow{a}\right| = 3$$
, $\left|\overrightarrow{b}\right| = 4$, $\left|\overrightarrow{c}\right| = 5$ and every vector $\overrightarrow{\alpha}$ is

perpendicular to the

sum of the other two vectors. Then the value of $\left| \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right|^2$ is :

View Text Solution

6. If sin x + sin y =
$$\frac{3}{4}$$
 and cos x + cos y = $-\frac{1}{4}$ then evaluate tan (x+y)

7. If 30
$$(an^2 x - \cos^2 x) + 7\cos 2x + 20 = 0$$
 then evaluate 2

cos 2x - 1

View Text Solution

8. Let
$$0 < A, B < rac{\pi}{2}$$
. If $A = an^{-1} igg(rac{x\sqrt{3}}{2k-x} igg)$ and $B = an^{-1} igg(rac{2x-k}{k\sqrt{3}} igg)$ then evaluate A - B (in degrees)

View Text Solution

9. Let y = f(x) and xy(1+y)dx = dy. If

$$f(0) = 1 \, \, {
m and} \, \, kf(2) = (1 + f(2))e^2,$$

 $k\in {}$, then k is equal to [Note : e denotes Napier's constant]

