

MATHS

BOOKS - NTA MOCK TESTS

PROBABILITY TEST

Multiple Choice Questions

1. If A & B ae two independent events then the value of $P(A \cup B)$. $P(A' \cap B')$ satisfies

(where C is an event defined that exactly one of A & B occurs).

A. $P(A \cup B). \ P(A' \cap B') \leq p(C)$

 $\mathsf{B}.\, P(A\cup B).\, P(A\,'\,'\cap B\,') \leq P(B)$

 $\mathsf{C}.\, P(A\cup B).\, P(A\, '\,\cap B) \leq P(A)$

D. None of these

Answer: A

2. One Indian and four American men and their wives are to be seated randomly around a circular table. Then the conditional probability that Indian manis seated adjacted to his wife given each American man is seated adjacent to his wife

A.
$$\frac{1}{5}$$

B. $\frac{1}{3}$
C. $\frac{2}{5}$
D. $\frac{1}{2}$

Answer: C

3. Let E^c denote the complement of an event E. Let E,F, G be pairwise independent events with P(G) > 0 and $P(E \cap F \cap G) = 0$. Then $P(E^c \cap F^c)G)$ equals

A. $P(E) - P(F^c)$

 $\mathsf{B}.\, P(E^c) - P(F)$

 $\mathsf{C}.\,P(E^c)+P(F^c)$

$$\mathsf{D}.\, P(E^c) - P(F^c)$$

Answer: B

View Text Solution

4. There identical dice are rolled. The probability that the same number will appear on each of them is

A.
$$\frac{3}{28}$$

B. $\frac{1}{18}$

C.
$$\frac{1}{36}$$

D. $\frac{1}{6}$

Answer: C

5. Four fair dice D_1 , D_2 , D_3 & D_4 each having six faces numbered 1,2,3,4,5 & 6 are rolled simultaneously. The probability that D_4 shows a number appearing on one of D_1 , D_2 & D_3 is

A.
$$\frac{91}{216}$$

B. $\frac{108}{216}$
C. $\frac{125}{216}$
D. $\frac{127}{216}$

Answer: A

6. A car manufactuing company has two plants. Plant P manufactues 70% of cars and plant Q 30%. At plant P, 80% of the cars are

rated as of standard quality and at pant Q, 90% of the cars are rated as of standard quality. A car is chosen at random and is found to be of standard quality. The change that it ha scome from plant P is .

Answer: A

7. Four persons independently solve a certain problem correctly with probabilities $\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{1}{8}$. Then the probability that the problem is solved correctly hy at least one of them is

A.
$$\frac{235}{256}$$

B. $\frac{21}{256}$
C. $\frac{3}{256}$
D. $\frac{253}{256}$

Answer: A

8. There are 4 white and 3 black balls in a box. In another box there are 3 white and 4 black balls. An unbiased dice is rolled. If it shows a number less than or equal to 3 then a ball is drawn from the first box but if it shows a number more than 3 then a ball is drawn from the first box but if it shows a number more than 3 then a ball is drawn from the second

box. I the ball dawn is black then the probability that the ball was drawn from the first box is

A.
$$\frac{1}{2}$$

B. $\frac{6}{7}$
C. $\frac{4}{7}$
D. $\frac{3}{7}$

Answer: D

View Text Solution

9. An unbiased die is rolled until a number greater than 4 appears. The probability that an even number o trials are needed is

A.
$$\frac{1}{2}$$

B. $\frac{2}{5}$
C. $\frac{1}{5}$
D. $\frac{2}{3}$

Answer: B

10. The probability that A speaks truth is $\frac{4}{5}$ while this probability for B is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact, is

A.
$$\frac{3}{20}$$

B. $\frac{1}{5}$
C. $\frac{7}{20}$
D. $\frac{4}{5}$

Answer: C

11. A and B each toss three coins. The probability that both get the same number of heads, is

A.
$$\frac{1}{9}$$

B. $\frac{3}{16}$
C. $\frac{5}{16}$
D. $\frac{3}{8}$

Answer: C

12. A letter is aken out at random from ASSISTANT and another is taken out from STATISTICS. The probability that they are the same letters, is

A.
$$\frac{1}{45}$$

B. $\frac{19}{90}$
C. $\frac{13}{90}$

D. None of these

Answer: B

13. The probability that a teacher will give an unannounced test during any class meetig is $\frac{1}{5}$. If a student is absent twice, then the probability that he will miss at least one test is

A.
$$\frac{7}{25}$$

B. $\frac{9}{25}$
C. $\frac{16}{25}$

D. $\frac{24}{25}$

Answer: B

View Text Solution

14. Suppose X has a binomial distribution $B\left(6, \frac{1}{2}\right)$ then which of the outcome is most likely?

A. X=0 and X=6

B. X=3

C. X=0

D. X=6

Answer: B

15. A complete cycle of a traffic light takes 60*s*. During each cycle the light is green for 25 s, yelow for 5s and red for 30s. At a randomly chosen time, the probability that the light will not be green is

Answer: D

16. Probability of a 3 digit number having all

the digits same is

D. None of these

Answer: A

17. The probability that the 6th day of a randomly chosen month of any year is a Sunday is

A.
$$\frac{1}{12}$$

B. $\frac{1}{17}$
C. $\frac{1}{7}$

D. None of these

Answer: D

18. A box contains 9 tickets numbered 1 to 9 inclusive. If 3 tickets are drawn from the box without replacement. The pobability that they

ar altenatively either {odd, even, odd} or

{even,odd, even} is

A.
$$\frac{5}{17}$$

B. $\frac{7}{14}$
C. $\frac{5}{16}$
D. $\frac{5}{18}$

Answer: D

19. A random variable X has the probability

distribution .

x	P(X)	
1	0.15	
2	0.23	
3	0.12	
4	0.10	
5	0.20	
6	0.08	
7	0.07	
8	0.05	

For the events E={X is a prime number } and

 $F = \{X < 4\}$, then $P(E \cup F)$ is

A. 0.77

B. 0.87

 $C.\,0.35$

 $D.\,0.50$

Answer: A

View Text Solution

20. Two cards are drawn one by one from a pack of cards. The probability of getting first card an ace and second is a face card is

(before drawing second card first card is not

placed again in the pack)

A.
$$\frac{1}{26}$$

B. $\frac{5}{52}$
C. $\frac{4}{221}$
D. $\frac{4}{13}$

Answer: C

21. A box contains tickets numbered 1 to N. n tickets are drawn from the box with repalcement. The probability that the largest number on the tickets is k, is

A.
$$\left(rac{k}{N}
ight)^n$$

B. $\left(rac{k-1}{N}
ight)^n$

C. 0

D. None of these

Answer: D

22. Three critics review a book Oods in favour of the book are 5:2,4:3 & 3:4 respectively for the three critics. The probability that majority are in favour of the book is

A.
$$\frac{35}{49}$$

B. $\frac{125}{343}$
C. $\frac{164}{343}$
D. $\frac{209}{343}$

23. The probability of getting at least one head when we toss 3 unbiased coins is

A.
$$\frac{3}{8}$$

B. $\frac{5}{8}$
C. $\frac{7}{8}$
D. $\frac{1}{8}$

24. Two uniform dice marked 1 to 6 are thrown together The probability that the score on the two dice is at least seven is

A.
$$\frac{5}{12}$$

B. $\frac{7}{12}$
C. $\frac{3}{4}$
D. $\frac{1}{2}$

Answer: B

25. Three integers are chosen at random without replacement from the first 20 positive integers. The pobability that their product is odd is

A.
$$\frac{3}{19}$$

B. $\frac{2}{19}$
C. $\frac{1}{19}$

D. $\frac{4}{19}$

Answer: B

View Text Solution

26. A computer producing factor has only two plants T_1 and T_2 . Plant T_1 produces 20% and plant T_2 produces 80% of the total computers produced. 7% of computers produced in the factory turn out to be defective. It is known that P(computer turns out to be defective given that it is produced in plant T_1) =10P (computer turns out to be defective given that it is produced in plant T_2) Where P(E) denotes the probability of an event E. A computer produced in the factory is randomly selected and it does not turn out to be defective. Then the probability that it is produced in plant T_2 is

A.
$$\frac{36}{73}$$

B. $\frac{47}{79}$
C. $\frac{78}{93}$

D. $\frac{75}{83}$

Answer: C

View Text Solution

27. A candidate takes three tests in succession and the probability of passing the first test is p. The probability of passing each secceeding test is p or $\frac{p}{2}$ according as he passes or fails in the preceding one. The candidate is selected, if he passes atleast two tests. The probability that the candidate is selected is

A.
$$p^2(2-p)$$

B.
$$p(2 - p)$$

$$\mathsf{C}.\, p+p^2+p^3$$

D.
$$p^2(1-p)$$

Answer: A

28. If A, B and C are mutually exclusive and exhaustive events of a random experiment that $P(B) = rac{3}{2}P(A)$ such and $P(C)=rac{1}{2}P(B)$, then $P(A\cup C)$ equals to A. $\frac{10}{13}$ B. $\frac{3}{13}$ C. $\frac{6}{13}$ D. $\frac{7}{13}$ Answer: D

29. If X is a binomial variate with the range $\{0, 1, 2, 3, 4, 5, 6\}$ and p(X = 2) = 4p(X = 4) then the paramete p of X is

A.
$$\frac{1}{2}$$

B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{6}$

Answer: B

30. If two different numbes are taken from the set {0,1,2,3,.....,10}, then the probability that their sum as well as absolute difference are both multiple of 4, is:

A.
$$\frac{6}{55}$$

B. $\frac{12}{55}$
C. $\frac{14}{45}$

 $\mathsf{D.}\;\frac{7}{55}$

Answer: A

View Text Solution