©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

PROBABILITY TEST

Multiple Choice Questions

1. If $A \& B$ ae two independent events then the
value of $P(A \cup B) \cdot P\left(A^{\prime} \cap B^{\prime}\right)$ satisfies
(where C is an event defined that exactly one of $A \& B$ occurs).

> A. $P(A \cup B) \cdot P\left(A^{\prime} \cap B^{\prime}\right) \leq p(C)$
> B. $P(A \cup B) \cdot P\left(A^{\prime \prime} \cap B^{\prime}\right) \leq P(B)$
> C. $P(A \cup B) \cdot P\left(A^{\prime} \cap B\right) \leq P(A)$
D. None of these

Answer: A

D View Text Solution

2. One Indian and four American men and their
wives are to be seated randomly around a circular table. Then the conditional probability
that Indian manis seated adjacted to his wife
given each American man is seated adjacent to
his wife
A. $\frac{1}{5}$
B. $\frac{1}{3}$
C. $\frac{2}{5}$
D. $\frac{1}{2}$

Answer: C

D View Text Solution

3. Let E^{c} denote the complement of an event
E. Let $\mathrm{E}, \mathrm{F}, \mathrm{G}$ be pairwise independent events
with $P(G)>0$ and $P(E \cap F \cap G)=0$. Then
$\left.P\left(E^{c} \cap F^{c}\right) G\right)$ equals
A. $P(E)-P\left(F^{c}\right)$
B. $P\left(E^{c}\right)-P(F)$
C. $P\left(E^{c}\right)+P\left(F^{c}\right)$

$$
\text { D. } P\left(E^{c}\right)-P\left(F^{c}\right)
$$

Answer: B

D View Text Solution

4. There identical dice are rolled. The probability that the same number will appear on each of them is

> A. $\frac{3}{28}$
> B. $\frac{1}{18}$
C. $\frac{1}{36}$
D. $\frac{1}{6}$

Answer: C

D View Text Solution

5. Four fair dice $D_{1}, D_{2}, D_{3} \& D_{4}$ each having six faces numbered $1,2,3,4,5 \& 6$ are rolled simultaneously. The probability that D_{4} shows a number appearing on one of $D_{1}, D_{2} \& D_{3}$ is

91

A. $\frac{91}{216}$
B. $\frac{108}{216}$
C. $\frac{125}{216}$
D. $\frac{127}{216}$

Answer: A

D View Text Solution

6. A car manufactuing company has two plants. Plant P manufactues 70% of cars and plant Q 30%. At plant P, 80% of the cars are
rated as of standard quality and at pant Q ,
90% of the cars are rated as of standard quality. A car is chosen at random and is found to be of standard quality. The change that it ha scome from plant P is .
A. $\frac{56}{83}$
B. $\frac{52}{83}$
C. $\frac{50}{83}$
D. $\frac{55}{83}$

Answer: A
7. Four persons independently solve a certain problem correctly with probabilities $\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{1}{8}$. Then the probability that the problem is solved correctly hy at least one of them is
A. $\frac{235}{256}$
B. $\frac{21}{256}$
C. $\frac{3}{256}$
D. $\frac{253}{256}$

Answer: A

D View Text Solution

8. There are 4 white and 3 black balls in a box.

In another box there are 3 white and 4 black balls. An unbiased dice is rolled. If it shows a number less than or equal to 3 then a ball is drawn from the first box but if it shows a number more than 3 then a ball is drawn from
the first box but if it shows a number more
than 3 then a ball is drawn from the second
box. I the ball dawn is black then the probability that the ball was drawn from the first box is

> A. $\frac{1}{2}$
> B. $\frac{6}{7}$
> C. $\frac{4}{7}$
> D. $\frac{3}{7}$

Answer: D

D View Text Solution
9. An unbiased die is rolled until a number greater than 4 appears. The probability that an even number o trials are needed is
A. $\frac{1}{2}$
B. $\frac{2}{5}$
C. $\frac{1}{5}$
D. $\frac{2}{3}$

Answer: B

10. The probability that A speaks truth is $\frac{4}{5}$ while this probability for B is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact, is
A. $\frac{3}{20}$
B. $\frac{1}{5}$
C. $\frac{7}{20}$
D. $\frac{4}{5}$

Answer: C

11. A and B each toss three coins. The probability that both get the same number of
heads, is
A. $\frac{1}{9}$
B. $\frac{3}{16}$
C. $\frac{5}{16}$
D. $\frac{3}{8}$
12. A letter is aken out at random from

ASSISTANT and another is taken out from

STATISTICS. The probability that they are the
same letters, is
A. $\frac{1}{45}$
B. $\frac{19}{90}$
C. $\frac{13}{90}$
D. None of these

Answer: B

D View Text Solution

13. The probability that a teacher will give an
unannounced test during any class meetig is
1 $\frac{1}{5}$. If a student is absent twice, then the probability that he wil miss atleast one test is
A. $\frac{7}{25}$
B. $\frac{9}{25}$
C. $\frac{16}{25}$
D. $\frac{24}{25}$

Answer: B

D View Text Solution

14. Suppose X has a binomial distribution
$B\left(6, \frac{1}{2}\right)$ then which of the outcome is most
likely?
A. $X=0$ and $X=6$
B. $X=3$
C. $X=0$
D. $X=6$

Answer: B

D View Text Solution

15. A complete cycle of a traffic light takes 60 s .

During each cycle the light is green for 25 s ,
yelow for 5 s and red for 30 s . At a randomly chosen time, the probability that the light will not be green is
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{4}{17}$
D. $\frac{7}{12}$

Answer: D

D View Text Solution

16. Probability of a 3 digit number having all
the digits same is
A. $\frac{1}{100}$
B. $\frac{3}{100}$
C. $\frac{7}{100}$
D. None of these

Answer: A

D View Text Solution

17. The probability that the 6 th day of a
randomly chosen month of any year is a

Sunday is
A. $\frac{1}{12}$
B. $\frac{1}{17}$
C. $\frac{1}{7}$
D. None of these

Answer: D

- View Text Solution

18. A box contains 9 tickets numbered 1 to 9
inclusive. If 3 tickets are drawn from the box without replacement. The pobability that they
ar altenatively either \{odd, even, odd\} or \{even,odd, even\} is

$$
\begin{aligned}
& \text { A. } \frac{5}{17} \\
& \text { B. } \frac{7}{14} \\
& \text { C. } \frac{5}{16} \\
& \text { D. } \frac{5}{18}
\end{aligned}
$$

Answer: D

D View Text Solution
19. A random variable X has the probability distribution.

X	$P(X)$
1	0.15
2	0.23
3	0.12
4	0.10
5	0.20
6	0.08
7	0.07
8	0.05

For the events $E=\{X$ is a prime number $\}$ and

$$
F=\{X<4\} \text {, then } P(E \cup F) \text { is }
$$

A. 0.77
B. 0.87
C. 0.35
D. 0.50

Answer: A

D View Text Solution

20. Two cards are drawn one by one from a pack of cards. The probability of getting first card an ace and second is a face card is
(before drawing second card first card is not
placed again in the pack)
A. $\frac{1}{26}$
B. $\frac{5}{52}$
C. $\frac{4}{221}$
D. $\frac{4}{13}$

Answer: C

D View Text Solution
21. A box contains tickets numbered 1 to $\mathrm{N} . \mathrm{n}$
tickets are drawn from the box with
repalcement. The probability that the largest number on the tickets is k, is
A. $\left(\frac{k}{N}\right)^{n}$
B. $\left(\frac{k-1}{N}\right)^{n}$
C. 0
D. None of these

Answer: D

22. Three critics review a book Oods in favour of the book are 5:2,4:3 \& 3:4 respectively for the three critics. The probability that majority are in favour of the book is

> A. $\frac{35}{49}$
> B. $\frac{125}{343}$
> C. $\frac{164}{343}$
> D. $\frac{209}{343}$

Answer: D

D View Text Solution

23. The probability of getting at least one head when we toss 3 unbiased coins is
A. $\frac{3}{8}$
B. $\frac{5}{8}$
C. $\frac{7}{8}$
D. $\frac{1}{8}$

Answer: C

D View Text Solution

24. Two uniform dice marked 1 to 6 are thrown
together The probability that the score on the
two dice is at least seven is
A. $\frac{5}{12}$
B. $\frac{7}{12}$
C. $\frac{3}{4}$
D. $\frac{1}{2}$

Answer: B

D View Text Solution

25. Three integers are chosen at random
without replacement from the first 20 positive
integers. The pobability that their product is odd is
A. $\frac{3}{19}$
B. $\frac{2}{19}$
C. $\frac{1}{19}$
D. $\frac{4}{19}$

Answer: B

D View Text Solution

26. A computer producing factor has only two
plants T_{1} and T_{2}. Plant T_{1} produces 20% and plant T_{2} produces 80% of the total computers produced. 7% of computers produced in the
factory turn out to be defective. It is known that

P (computer turns out to be defective given that it is produced in plant T_{1})
=10P (computer turns out to be defective given
that it is produced in plant T_{2})

Where $P(E)$ denotes the probability of an event
E. A computer produced inthe factory is randomly selected and it does not turn out to be defective. Then the probability that it is produced in plant T_{2} is
A. $\frac{36}{73}$
B. $\frac{47}{79}$
C. $\frac{78}{93}$
D. $\frac{75}{83}$

Answer: C

D View Text Solution

27. A candidate takes three tests in succession
and the probability of passing the first test is
p. The probability of passing each secceeding test is p or $\frac{p}{2}$ according as he passes or fails
in the preceding one. The candidate is
selected, if he passes atleast two tests. The probability that the candidate is selected is

$$
\begin{aligned}
& \text { A. } p^{2}(2-p) \\
& \text { B. } p(2-p) \\
& \text { C. } p+p^{2}+p^{3} \\
& \text { D. } p^{2}(1-p)
\end{aligned}
$$

Answer: A

D View Text Solution
28. If A, B and C are mutually exclusive and exhaustive events of a random experiment such \quad that $\quad P(B)=\frac{3}{2} P(A) \quad$ and $P(C)=\frac{1}{2} P(B)$, then $P(A \cup C)$ equals to

$$
\begin{aligned}
& \text { A. } \frac{10}{13} \\
& \text { B. } \frac{3}{13} \\
& \text { C. } \frac{6}{13} \\
& \text { D. } \frac{7}{13}
\end{aligned}
$$

Answer: D

29. If X is a binomial variate with the range
$\{0,1,2,3,4,5,6\}$ and $p(X=2)=4 p(X=4)$ then the paramete p of X is
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{6}$

Answer: B

D View Text Solution

30. If two different numbes are taken from the set $\{0,1,2,3, \ldots, 10\}$, then the probability that
their sum as well as absolute difference are both multiple of 4 , is:
A. $\frac{6}{55}$
B. $\frac{12}{55}$
C. $\frac{14}{45}$
D. $\frac{7}{55}$

Answer: A

- View Text Solution

