

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

THREE DIMENSIONAL GEOMETRY TEST

Multiple Choice Questions

A.
$$2\hat{i} + 7\hat{j} + 13\hat{k}$$

B. $-2\hat{i} - 7\hat{j} + 13\hat{k}$
C. $2\hat{i} + 7\hat{j} - 13\hat{k}$
D. $-2\hat{i} + 7\hat{j} + 13\hat{k}$

Answer: D

View Text Solution

2. The disance of point of intersection of the

lines

$$rac{x-4}{1} = rac{y+3}{-4} = rac{z+1}{7}$$

&

(1,-4,7) is (in units)

A. $\sqrt{15}$

- $\mathrm{B.}\,\sqrt{27}$
- $\mathsf{C}.\sqrt{26}$
- D. $\sqrt{14}$

Answer: C

3. Plane is parallel to the vectors $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{k}$, and another plane is parallel to $\hat{i} + \hat{j}$ and $\hat{i} - \hat{k}$ then the acute angle between $4\hat{i} - \hat{j}$ and the line of intersection of the two planes is

A.
$$\cos^{-1} \frac{1}{\sqrt{2}}$$

B. $\cos^{-1} \frac{3}{\sqrt{34}}$
C. $\cos^{-1} \frac{2}{\sqrt{34}}$
D. $\cos^{-1} \frac{5}{\sqrt{34}}$

4. Statement I: There will be exactly two lines making an angle 30° with $\frac{x}{3} = \frac{y}{2} = \frac{z}{1}$ and passin through (1,1,1)

Statement II: From any point outsid the line L, thee are two lines which are making an angle $heta\Big(
eq rac{\pi}{2}\Big)$

A. Both Statement I and Statement II are

true and the Statement II is the correct

explanation of the Statement I

B. Both Statement I and Statement II are

true but Statemen II is not explanation

of the Statement I

C. Statemen I is true but Statement II is

false

D. Statement I is false but statement II is

true

Answer: A

View Text Solution

5. The equation of the line passing through the points (1,-2,3) and parallel to the planes x - y + 2z - 5 = 0 and 3x + y + z - 6 = 0is

D. None of these

Answer: A

6. The line
$$\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-1}{-1}$$

intersect the curve $xy = c^2, z = 0$ if c is equal

to

- A. $\pm\sqrt{5}$
- $\mathsf{B.}\pm 4$
- $\mathsf{C.}\pm 1/2$
- D. $\pm 1/\sqrt{3}$

Answer: A

7. The line $\frac{x}{k} = \frac{y}{2} = \frac{z}{-12}$ makes an isosceles triangle with the planes 2x + y + 3z - 1 = 0 & x + 2y - 3z - 1 = 0 then value of k is

A. 3

 $\mathsf{B.}-2$

 $\mathsf{C.}\,5$

D. 0

Answer: B

8. Given a point P(0,-1,3), the length of projection of AP, from the straight line passing through A(1, -3, 2) & (2, -1, 4) is

A.
$$\frac{5}{3}$$
 unit
B. $\frac{5}{2}$ unit
C. $\frac{5}{4}$ unit

D. 5 unit

Answer: A

9. The equation of the plane through the line of intersection of the plane ax + by + cz + d = 0 and $\alpha x + \beta y + \gamma z + e = 0$, and perpendicular to xy - plane is

A.

 $(a\gamma-clpha)x+(b\gamma-ceta)y+(d\gamma-ce)=0$

B.
$$(a\gamma+clpha)x+(b\gamma-ceta)y+e=0$$

$$\mathsf{C}.\,(a\gamma-c\alpha)x+(b\gamma-c\beta)y+d=0$$

D. None of these

Answer: A

View Text Solution

10. The coordinates of the foot of the perpendicular drawn from the origin to the plane 3x + 4y - 6z + 1 = 0, is

A.
$$\left(\frac{3}{61}, \frac{4}{61}, \frac{6}{61}\right)$$

B. $\left(\frac{-3}{61}, \frac{6}{61}, \frac{6}{61}\right)$
C. $\left(\frac{-3}{61}, \frac{6}{-61}, \frac{6}{61}\right)$
D. $\left(\frac{-3}{61}, \frac{-4}{61}, \frac{6}{61}\right)$

Answer: D

View Text Solution 11. If the angle θ between the line $\alpha + 1 = \alpha + 2$

 $\displaystyle rac{x+1}{1} = \displaystyle rac{y-1}{2} = \displaystyle rac{z-2}{2}$ and the plane

$$2x-y+\sqrt{\lambda}-z+4=0,$$
 is such that $\sin heta=rac{1}{3}$ then λ is equal to A. $rac{5}{3}$

3
B.
$$\frac{5}{2}$$

C. $\frac{5}{4}$
D. $\frac{3}{2}$

Answer: A

12. The volume of the tetrahedron included between the plane 3x + 4y - 5z - 60 = 0, and the coordinate planes is

A. 500

B.400

C. 600

D. 300

Answer: C

13. The line $rac{x-3}{2} = rac{y-4}{5} = rac{z-6}{7}$

A. lie is plane 3x + 5y + 2z = 6

B. is parallel to 2x - 5y + 3z = 9

C. is perpendicular to 2x - 5y + 3z = 9

D. passing through (2,3,5)

14. The direction cosies of the passing through

P(2,3,-1) and the origin are

A.
$$\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$$

B. $\frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$
C. $\frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$
D. $\frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}$

Answer: C

View Text Solution

15. The direction cosines of the normal to the plane containing both the line x=y=z and $x-1=y-1=rac{z-1}{d}$ (where $d\in R-\{1\}$

) can be

Answer: A

View Text Solution

16. A variable plane passes through a fixed point (a,b,c) and meets the coordinate axes in A,B,C. The locus of the point common to plane through A,B,C parallel to coordinate planes is

A.
$$axy+byz+czx=xyz$$

B.
$$azy + bzx + cxy = xyz$$

C.
$$axy+byz+czx=2xyz$$

D. None of these

17. If the direction ratios of two lines are given

by l+m+n=0, $mn-2\ln+lm=0$, then

the angle between the lines is

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$

Answer: C

D. 0

View Text Solution

A.
$$\frac{3}{2}$$

B. $\frac{5}{2}$
C. $\frac{7}{2}$
D. $\frac{9}{2}$

Answer: D

Answer: A

20. The xy plane divides the line joining the points (-1,3,4) and (2,-5,6)

A. Internally in the ratio 2:3

B. Externally in the ratio 2:3

C. Internally in the ratio 3:2

D. Externally in the ratio 3:2

21. The image of te point P(1,3,4) in the plane 2x-y+z+3=0 is A. (3, 5, -2)B. (-3, 5, 2)C.(3, -5, 2)D.(3, 5, 2)

22. The angle between the lines $\frac{x-2}{3} = \frac{y+1}{-2} = \frac{z-2}{0} \quad \text{and}$ $\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}, \text{ is equal to}$ A. $\frac{\pi}{2}$ B. $\frac{\pi}{3}$ C. $\frac{\pi}{6}$

D. None of these

Answer: A

23. The projections of a directed line segment on the co-ordinate axes are 12,4,3. The direction cosines of the line are

A.
$$\frac{12}{13}, \frac{-4}{13}, \frac{3}{13}$$

B. $\frac{-12}{13}, \frac{-4}{13}, \frac{3}{13}$
C. $\frac{12}{13}, \frac{4}{13}, \frac{3}{13}$

D. None of these

Answer: C

24. The radius (in units) of the circular section of the sphere $\left| \overrightarrow{r} \right| = 5$, by the plane \overrightarrow{r} . $\left(\hat{i} + \hat{j} + \hat{k} \right) = 3\sqrt{3}$ is equal to

A. 1

 $\mathsf{B.}\,2$

C. 3

D. 4

Answer: D

25. The spheres $x^2+y^2+z^2=25$ and $x^2+y^2+z^2=24x-40y-18z+225=0$

A. Touch internally

- B. Touch externally
- C. Intersect
- D. None of these

View Text Solution

26. The equation of the sphere passing through the point (1,3,-2) and the circle $x^2 + y^2 + z^2 = 25$ & x = 0, is A. $x^2 + y^2 + z^2 - 11x + 25 = 0$ B. $x^2 + y^2 + z^2 + 11x - 25 = 0$ C. $x^2 + y^2 + z^2 + 11x + 25 = 0$

D. None of the above

27. The equation of the plane containing the line $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ and the point (0, 7, -7) is

- A. x + y + z = 1
- B. x + y + z = 2
- C. x + y + z = 0
- D. None of these

Answer: C

View Text Solution

28. If the planes x = cy + bz, y = az + cx & z = bx + ay, pass through one line then $a^2 + b^2 + c^2 + 2abc$, is equal to

A. ab

B. 1

C. *bc*

 $\mathsf{D}.0$

29. The point P is the intersectiono the straight line joining the ponts Q(2, 3, 5) & R(1, -1, 4) with the plane 5x - 4y - z = 1. If Sbe the foot of the perpendicular drawn from the point T(2,1,4) to QR then the length (in units) of the line segment PS is

A.
$$\frac{1}{\sqrt{2}}$$

B. $\sqrt{2}$

D. $2\sqrt{2}$

Answer: A

View Text Solution

30. In a three dimensional coordinate system, P,Q and R are images of a point A(a,b,c) in th xy,yz and the zx planes, respectively. If G is the centroid of ΔPQR , then the area of ΔAGO is (where o is the origin)

A. 0 sq.units

B.
$$a^2+b^2+c^2$$
 sq. units

C.
$$rac{2}{3}ig(a^2+b^2+c^2ig)$$
 sq.units

D. None of these

Answer: A

View Text Solution