©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - NTA MOCK TESTS

VECTOR ALGEBRA TEST

Multiple Choice Questions

1. If the vectors \vec{a}, \vec{b} and \vec{c} are the sides BC, CA and
$A B$ respectively of a triangle $A B C$ then
A. $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0$

> B. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
> C. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$
> D. $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$

Answer: B

D View Text Solution

2. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+2 \vec{b}+2 \vec{c}=\overrightarrow{0}$ then $|\vec{a} \times \vec{c}|$ is equal to

> A. $\frac{1}{4}$
> B. $\frac{15}{16}$
C. $\frac{\sqrt{15}}{4}$
D. $\frac{\sqrt{15}}{16}$

Answer: C

D View Text Solution

3. A line with positive direction cosines passes through the point $P(2,-1,2)$ makes equal angles with the coordinate axes. The line meets the plane $2 x+y+z=9$ at point Q . The length of the line segment PQ equals
A. 1
B. $\sqrt{2}$
C. $\sqrt{3}$
D. 2

Answer: C

D View Text Solution

4. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Which of the following is representing a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and also whose scalar product with vector \vec{c} would be $\vec{p} \cdot \vec{c}=18$.
A. $\vec{p}=32 \hat{i}-2 \hat{j}-28 \hat{k}$
B. $\vec{p}=64 \hat{i}-2 \hat{j}-28 \hat{k}$
C. $\vec{p}=64 \hat{i}+2 \hat{j}-28 \hat{k}$
D. $\vec{p}=64 \hat{i}-2 \hat{j}+28 \hat{k}$

Answer: B

D View Text Solution

5. $\vec{a} \cdot(\vec{a} \times \vec{b})=$
A. $\vec{b} \cdot \vec{b}$
B. $a^{2} b$
C. 0
D. $a^{2}+a b$

Answer: C

D View Text Solution

6. If \vec{a}, \vec{b} and \vec{c} are three noncoplanar unit vectors then the values of $\left[\begin{array}{lll}\vec{a} & \vec{p} & \vec{q}\end{array}\right] \vec{a}+\left[\begin{array}{lll}\vec{b} & \vec{p} & \vec{q}\end{array}\right] \vec{b}+\left[\begin{array}{lll}\vec{c} & \vec{p} & \vec{q}\end{array}\right] \vec{c}$ is always equal to
A. $(\vec{a}+\vec{b}+\vec{c}) \times(\vec{p} \times \vec{q})$
B. $\vec{a}+\vec{b}+\vec{c}+\vec{p}+\vec{q}$
C. $\vec{p}+\vec{q}$
D. $\vec{p} \times \vec{q}$

Answer: D

D View Text Solution

7. If the scalar projection of the vectors $x \hat{i}-\hat{j}+\hat{k}$ on the vectors $2 \hat{i}-\hat{j}+5 \hat{k}$ is $\frac{1}{\sqrt{3}}$ then value of x is equal to
A. $\frac{-5}{2}$
B. 6

$$
\text { C. }-6
$$

D. 3

Answer: A

D View Text Solution

8. Let OACB be parallelogram with O at origin \& OC a

 diagonal.Let D be the mid point of $O A$. Then the ratio in which $O C$ intersect $B D$ isA. 2:1
B. 2:3
C. 3:4

Answer: A

- View Text Solution

9. Let \vec{r} be a unit vector satisfying $\vec{r} \times \vec{a}=\vec{b}$
where $|\vec{a}|=\sqrt{3}$ and $|\vec{b}|=\sqrt{2}$ then

$$
\begin{aligned}
& \text { A. } \vec{r}=\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b}) \\
& \text { B. } \vec{r}=\frac{1}{3}(\pm \vec{a}+\vec{a} \times \vec{b}) \\
& \text { C. } \vec{r}=\frac{1}{4}(\pm \vec{a}+\vec{a} \times \vec{b}) \\
& \text { D. } \vec{r}=\frac{2}{3}(\pm \vec{a}+\vec{a} \times \vec{b})
\end{aligned}
$$

Answer: B

D View Text Solution

10. Let $\vec{a}=\hat{i}+\hat{j}+\sqrt{2} \hat{k}$,
$\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+\sqrt{2} \hat{k}$ and
$\vec{c}=6 \hat{i}+\hat{j}+\sqrt{2} \hat{k}$ be three vectors such that the
projection vector of \vec{b} on \vec{a} is $|\vec{a}|$
If $\vec{a}+\vec{b}$ is perpendicular to \vec{c} then $|\vec{b}|$ is equal to
A. $\sqrt{22}$
B. $\sqrt{32}$
C. 6

D View Text Solution

11. Unit vectors \widehat{a} and \hat{b} are perpendicular to each other and the unit vector \hat{c} is inclined at angle θ to both \widehat{a} and \hat{b}. If $\hat{c}=m(\widehat{a}+\hat{b})+n(\widehat{a} \times \hat{b})$ and m, n are real, then
A. $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$
B. $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{2}$
C. $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$

$$
\text { D. } \frac{\pi}{4} \leq \theta \leq \pi
$$

Answer: A

D View Text Solution

12. If the three vectors $\lambda \hat{i}+\hat{j}+2 \hat{k}, \hat{i}+\lambda \hat{j}-\hat{k}$
and $2 \hat{i}-\hat{j}+\lambda \hat{k}$ are coplanar, then λ may be equal to
A. -2
B. -3
C. 2
D. $1-2 \sqrt{3}$

D View Text Solution

13. If vector \vec{a}, \vec{b} and \vec{c} satisfy the condition
$(\vec{b}-\vec{a}) \cdot\left(\vec{c}-\frac{\vec{a}+\vec{b}}{2}\right)$ is
A. 2
B. 1
C. -1
D. 0
14. The vector c directed along the internal bisector of the angle between the vectors $\vec{a}=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $\vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$ with $|\vec{c}|=5 \sqrt{6}$ is

$$
\begin{aligned}
& \text { А. } \frac{5}{3}(\hat{i}-7 \hat{j}+2 \hat{k}) \\
& \text { в. } \frac{5}{3}(5 \hat{i}+5 \hat{j}+2 \hat{k}) \\
& \text { C. } \frac{5}{3}(\hat{i}+7 \hat{i}+2 \hat{k}) \\
& \text { D. } \frac{5}{3}(-5 \hat{i}+5 \hat{j}+2 \hat{k})
\end{aligned}
$$

Answer: A
15. Let $\vec{x}, \vec{y}, \vec{z}$ be vectors such that $|\vec{x}|=|\vec{y}|=|\vec{z}|=\sqrt{2}$ and $\vec{x}, \vec{y}, \vec{z}$ make angles of 60° with each other and $(\vec{x} \times \vec{y})=\vec{c}$ then $\vec{x}=$

> A. $\{(\vec{a}+\vec{b}) \times \vec{c}-(\vec{a}+\vec{b})\}$
> B. $\{(\vec{a}+\vec{b})-(\vec{a}+\vec{b}) \times \rightarrow\}$
> C. $\left.\frac{1}{2}(\vec{a}+\vec{b}) \times \vec{c}-(\vec{a}+\vec{b})\right\}$
D. None of these

Answer: C
16. If A, B and C are the vertices of a triangle whose position vectors are \vec{a}, \vec{b} and \vec{c} respectively G is the centroid of the $\triangle A B C$, then $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}$ is

$$
\begin{aligned}
& \text { A. } \overrightarrow{0} \\
& \text { B. } \vec{a}+\vec{b}+\vec{c} \\
& \text { C. } \frac{\vec{a}+\vec{b}+\vec{c}}{3} \\
& \text { D. } \frac{\vec{a}-\vec{b}-\vec{c}}{3}
\end{aligned}
$$

Answer: A
17. A unit vector in the $x y$-plane that makes an angle of 45° with the vector $\hat{i}+\hat{j}$ and an angle of 60° with the vector $3 \hat{i}-4 \hat{j}$ is

$$
\begin{aligned}
& \text { A. } \frac{\hat{i}+\hat{j}}{\sqrt{2}} \\
& \text { B. } \frac{\hat{i}-\hat{j}}{\sqrt{2}} \\
& \text { C. } \frac{2 \hat{i}-\hat{j}}{\sqrt{2}}
\end{aligned}
$$

D. None of these

Answer: D

18. If $\vec{x}+\vec{y}+\vec{z}=\overrightarrow{0}$,
$|\vec{x}|=|\vec{y}|=|\vec{z}|=2$ and θ is the angle between \vec{y} and \vec{z} then the value of $\operatorname{cosec} c^{2} \theta+\cot ^{2} \theta$ is equal to
A. $\frac{4}{3}$
B. $\frac{5}{3}$
C. $\frac{1}{3}$
D. 1

Answer: B
19. If $\vec{a}=-\hat{i}+\hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=-2 \hat{i}+2 \hat{j}+3 \hat{k}$ then the angle between $2 \vec{a}-\vec{c}$ and $\vec{a}+\vec{b}$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{3 \pi}{2}$

Answer: B
20. The point of intersection of the lines

$$
\begin{aligned}
& \vec{r}=7 \hat{i}+10 \hat{j}+13 \hat{k}+s(2 \hat{i}+3 \hat{j}+4 \hat{k}) \\
& \text { and } \vec{r}=3 \hat{i}+5 \hat{j}+7 \hat{k}+t(\hat{i}+2 \hat{j}+3 \hat{k}) \text { is }
\end{aligned}
$$

$$
\text { A. } \hat{i}+\hat{j}-\hat{k}
$$

$$
\text { B. } 2 \hat{i}-\hat{j}+4 \hat{k}
$$

$$
\text { C. } \hat{i}-\hat{j}+\hat{k}
$$

$$
\text { D. } \hat{i}+\hat{j}+\hat{k}
$$

Answer: D

21. If \vec{a}, \vec{b} and \vec{c} are unit vectors then $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}$ does not exceed.
A. 6
B. 9
C. 5
D. 2

Answer: B
22. If A, B and C are three points with position vectors
$\vec{a}, \vec{b}, \vec{c}$ respectively then perpendicular distance of A from the line joining B and C is

$$
\begin{aligned}
& \text { A. } \frac{|\vec{a} \times \vec{b} \times \vec{c}|}{2(\vec{b} \times \vec{c})} \\
& \text { B. } \frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}{2|(\vec{b}-\vec{c})|} \\
& \text { C. } \frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}{|\vec{b}-\vec{c}|}
\end{aligned}
$$

D. Non

Answer: C
23. If three points whose position vectors are
$A=a \hat{i}+b \hat{j}+c \hat{k}, B=\hat{i}+\hat{j}$ and $C=-\hat{i}-\hat{j}$
are collinear then

$$
\begin{aligned}
& \text { A. } \vec{a}-2 \vec{b}=1 \\
& \text { в. } \vec{a}-2 \vec{b}=2 \\
& \text { С. } \vec{a}-2 \vec{b}=3 \\
& \text { D. } \vec{a}-2 \vec{b}=0
\end{aligned}
$$

Answer: A
24. Consider \hat{a} and \hat{b} be two unit vectors such that
$\widehat{a}+\hat{b}$ is also a unit vector. Then the angle between \widehat{a} and \hat{b} is
A. Acute angle
B. Riht angle
C. Obtuse angle
D. Striaght angle

Answer: C

25. If $\vec{a}=\vec{b}+\vec{c}, \vec{b} \times \vec{d}=\overrightarrow{0}, \vec{c}, \vec{d}=0$ then

$$
\vec{d} \times(\vec{a} \times \vec{d})
$$

the vector

$$
|\vec{d}|^{2}
$$

A. \vec{a}
B. \vec{d}
C. \vec{b}
D. \vec{c}

Answer: D
26. $\vec{a}, \vec{b}, \vec{c}$ are three noncoplanar vectors such that

$$
\left.\begin{array}{l}
{[\vec{a}+\vec{b}+\vec{c} \vec{a}-\vec{b}+\vec{c} 2 \vec{a}+\vec{b}-\vec{c}}
\end{array}\right]
$$

A. 3
B. -3
C. 2
D. 6

Answer: D
27. If the vectors $\vec{b}=(\tan \alpha,-1,2 \sqrt{\sin \alpha / 2})$ and
$\vec{c}=\left(\tan \alpha, \tan \alpha-\frac{3}{\sqrt{\sin \alpha / 2}}\right)$ are orthogonal
and a vector $\vec{a}=(1,3, \sin \alpha)$ makes an obtuse angle wit z-axis, then the value of α is
A. $\alpha=(4 n+1) \pi-\tan ^{-1} 2, n \in Z$
B. $\alpha=(4 n+2) \pi-\tan ^{-1} 2, n \in Z$
C. $\alpha=(4 n-1) \pi+\tan ^{-1} 2, n \in Z$
D. $\alpha=(4 n+2) \pi+\tan ^{-1} 2, n \in Z$

Answer: A

$$
\begin{aligned}
& \text { 28. If }|\vec{a}|=3,|\vec{b}|=4|\vec{c}|=5 \quad \text { and } \\
& \vec{a} \perp(\vec{b}+\vec{c}) \\
& \vec{b} \perp(\vec{c}+\vec{a}), \vec{c} \perp(\vec{a}+\vec{b}), \\
& |\vec{a}+\vec{b}+\vec{c}| \text { is equal to }
\end{aligned}
$$

A. 50
B. 25
C. $5 \sqrt{2}$
D. 12

Answer: C
29. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar non zero vectors such that
$\vec{b} \times \vec{c}=\vec{a}, \vec{a} \times \vec{b}=\vec{c} \quad$ and $\quad \vec{c} \times \vec{a}=\vec{b}$,
then which of the following is not true
A. $|\vec{a}|=1$
B. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=1$
C. $|\vec{a}|+|\vec{b}|+|\vec{c}|=3$
D. $|\vec{a}| \neq|\vec{b}| \neq|\vec{c}|$

Answer: D
30. If x, y and z are non zero real numbers and $\vec{a}=x \hat{i}+2 \hat{j}, \vec{b}=y \hat{j}+\hat{k}$ and $\vec{c}=x \hat{i}+y \hat{j}+z \hat{k}$ are such that $\vec{a} \times \vec{b}=z \hat{i}-3 \hat{j}+\hat{k} \quad$ then $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$ equals to
A. 3
B. 10
C. 9
D. 6

Answer: C

