©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NEET PREVIOUS YEAR (YEARWISE + CHAPTERWISE)

NEET 2021

Question

1. A series LCR circuit containing 5.0 H
inductor, $80 \mu F$ capacitor and 40Ω resistor is
connected to 230 V variable frequency ac source. The angular frequencies of the source at which power transfered to circuit is half the power at resonant angular frequency are likely to be.
A. $46 \mathrm{rad} / \mathrm{s}$ and $54 \mathrm{rad} / \mathrm{s}$
B. $42 \mathrm{rad} / \mathrm{s}$ and $58 \mathrm{rad} / \mathrm{s}$
C. $25 \mathrm{rad} / \mathrm{s}$ and $75 \mathrm{rad} / \mathrm{s}$
D. $50 \mathrm{rad} / \mathrm{s}$ and $25 \mathrm{rad} / \mathrm{s}$

Answer:
2. A uniform conducting wire of length 12a and resistance ' R ' is wound up as a current carrying coil in the shape of

1. an equilateral triangle of side 'a'
2. a square of side 'a'

The magnetic dipole moments of the coil in each case resp. are.
A. $3 I a^{2}$ and $4 I a^{2}$
B. $4 I a^{2}$ and $3 I a^{2}$

C. $\sqrt{3} I a^{2}$ and $3 I a^{2}$

D. $3 I a^{2}$ and $I a^{2}$

Answer:

D Watch Video Solution

3. A ball of mass 0.15 kg is dropped from a height 10 m strikes the ground and rebounds to the same height. The magnitude of impulse imparted to the ball is $\left(g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right.$) nearly:
A. $2.1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
B. $1.4 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
C. $0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
D. $4.2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

4. A step down transformer connected to an ac mains supply of 220 V is made to operate at

11V, 44W lamp. Ignoring power losses in the
transformer what is the current in primary circuit.
A. 2 A
B. 4 A
C. 0.2 A
D. 0.4 A

Answer:
(Watch Video Solution
5. From a circular ring of mass M and radius R,
an arc corresponding to a 90° sector is removed. The moment of inertia of the remaining part of the ring about an axis passing through the centre of the ring and perpendicular to the plane of the ring is k times $M R^{2}$. Then the value of k is

$$
\begin{aligned}
& \text { A. } \frac{1}{4} \\
& \text { B. } \frac{1}{8} \\
& \text { C. } \frac{3}{4}
\end{aligned}
$$

D. $\frac{7}{8}$

Answer:

D Watch Video Solution

6. A particle moving in a circle of radius R with
a uniform speed takes a time T to complete one revolution. If this particle were projected with the same speed at an angle θ to the
horizontal, the maximum height attained by it
equals $4 R$. The angle of projection θ is then given by

$$
\begin{aligned}
& \text { A. } \theta=\sin ^{-1}\left(\frac{\pi^{2} R}{g T^{2}}\right)^{\frac{1}{2}} \\
& \text { B. } \theta=\sin ^{-1}\left(\frac{2 g T^{2}}{\pi^{2} R}\right)^{\frac{1}{2}} \\
& \text { C. } \theta=\cos ^{-1}\left(\frac{2 g T^{2}}{\pi^{2} R}\right)^{\frac{1}{2}} \\
& \text { D. } \theta=\cos ^{-1}\left(\frac{\pi^{2} R}{g T^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

Answer:

- Watch Video Solution

7. Twenty seven drops of same size are charged at 220 V each. They combine to form a bigger drop. Calculate the potential of the bigger drop.
A. 4520 V
B. 1980 V
C. 660 V
D. 1320 V

Answer:

8. A particle of mass ' m ' is projected with a velocity $v=k V_{e}(k<1)$ from the surface of
the earth.(Ve = escape velocity)The maximum height above the surface reached by the particle is:
A. $\frac{R^{2} k}{1+k}$
B. $\frac{R k^{2}}{1-k^{2}}$
C. $R\left(\frac{k}{1-k}\right)^{2}$
D. $R\left(\frac{k}{1+k}\right)^{2}$

Answer:

D Watch Video Solution

9. A car starts from rest and accelerates at $5 \frac{m}{s^{2}}$. At $\mathrm{t}=4 \mathrm{~s}$, a ball is dropped out of a window by a person sitting in the car. What is
the velocity and acceleration of the ball at $t=$ $6 s ?$
A. $20 \sqrt{2} \frac{m}{s}, 0$
B. $20 \sqrt{2} \frac{m}{s}, 10 \frac{m}{s^{2}}$
C. $20 \sqrt{2} \frac{m}{s}, 5 \frac{m}{s^{2}}$
D. $20 \frac{m}{s}, 0$

Answer:

D Watch Video Solution

10. Two conducting circular loops of radii R_{1} and R_{2} are placed in the same plane with their centres coinciding. If $R_{1} \gg R_{2}$ the mutual inductance M between them will be directly proportional to
A. $\frac{\left(R_{1}\right)^{2}}{R_{2}}$
B. $\frac{\left(R_{2}\right)^{2}}{R_{1}}$
C. $\frac{R_{1}}{R_{2}}$
D. $\frac{R_{2}}{R_{1}}$

Answer:

D Watch Video Solution

11. A radioactive nucleus X undergoes spontaneous decay in the sequence
$z X$ to $z-1 B$ to $z-3 C$ to $z-2 D$, where Z is the atomic number of element Z. The possible decay particles in the sequence are:
A. $\beta^{+}, \alpha, \beta^{-}$
B. $\beta^{-}, \alpha, \beta^{+}$
C. $\alpha, \beta^{-}, \beta^{+}$
D. $\alpha, \beta^{+}, \beta^{-}$

Answer:

D Watch Video Solution
12. In a potentiometer circuit a cell of EMF 1.5 V gives balance point at 36 cm length of wire. If another cell of EMF 2.5 V replaces the first cell., then at what length of the wire, the balance point occurs?
A. 64 cm
B. 62 cm
C. 60 cm
D. 21.6 cm
13. A small block slides without friction down
an iclined plane starting form rest. Let S_{n} be
the distance traveled from time $t=n-1$ to
$t=n$. Then $\frac{S_{n}}{S_{n+1}}$ is:
A. $\frac{2 n+1}{2 n-1}$
B. $\frac{2 n}{2 n-1}$
C. $\frac{2 n-1}{2 n}$
D. $\frac{2 n-1}{2 n+1}$

Answer:

D Watch Video Solution

14. Consider the following statements A and
B and identify the correct answer
(A) A Zener diode is always connected in reverse bias to use it as voltage regulator.
(B) The potential barrier of a $p-n$ junction
lies between 0.1 to 0.3 V , approximately.
A. A is correct and B is incorrect

B. A is incorrect and B is correct

C. (A) and (B) both are correct
D. (A) and (B) both are incorrect

Answer:

D Watch Video Solution

15. The electron concentration in an n-type semiconductor is the same as hole concentration in a p-type semiconductor. An
external field is applied across each of them.

Compare the currents in them.

A. current in n-type gt current in p-type
B. no current will flow in p-type, current will only flow in n-type
C. current in n-type = current in p-type
D. current in p-type gt current in n-type

Answer:

16. A capacitor of capacitance C is connected
across an ac source of volatge V given by,
$V=V_{0} \sin (w t)$. The displacement current between the plates of the capacitor would then be given by

$$
\begin{aligned}
& \text { A. } I_{d}=\frac{V_{0} \sin (w t)}{w C} \\
& \text { B. } I_{d}=\left(V_{0} w C \sin (w t)\right) \\
& \text { C. } I_{d}=\left(V_{0} w C \cos (w t)\right) \\
& \text { D. } I_{d}=\frac{V_{0} \cos (w t)}{w C}
\end{aligned}
$$

- Watch Video Solution

17. A particle is released from height S from the surface of the earth. At a certain height its

KE is three times its PE. The height from the surface of earth and the speed of the particle at that instant are resp.

$$
\begin{aligned}
& \text { А. } \frac{S}{2}, \frac{\sqrt{3 g S}}{2} \\
& \text { в. } \frac{S}{4}, \sqrt{\frac{3 g S}{2}} \\
& \text { с. } \frac{S}{4}, \frac{3 g S}{2}
\end{aligned}
$$

D. $\frac{S}{4}, \frac{\sqrt{3 g S}}{2}$

Answer:

D Watch Video Solution

18. An infinitely long straight consuctor carries
a current of 5 A as shown. An electron is moving with a speed of $10^{5} \frac{\mathrm{~m}}{\mathrm{~s}}$ parallel to the conductor. The perpendicular distance between the electron and the conductor is 20 cm at an instant. Calculate the magnitude
of the force experienced by the electron at
that instant.

A. $4 \pi x 10^{-20} N$
B. $8 x 10^{-20} N$
C. $4 x 10^{-20} N$
D. $8 \pi x 10^{-20} N$

Answer:

- Watch Video Solution

19. A screw gauge gives the following readings when used to measure the diameter of a wire.

Main Scale Reading: Omm

Circular scale reading: 52 divisions

Given that 1 mm on main scale corresponds to

100 divisons on the circular scale. The diameter of the wire from the above data is
A. 6.26 cm
B. 0.052 cm
C. 0.52 cm
D. 0.026 cm

Answer:

D Watch Video Solution

20. If force [F] acceleration [A] time [T] are chosen as the fundamental physical quantities. Find the dimensions of energy.

> A. $[F][A]\left[T^{-1}\right]$
> B. $[F]\left[A^{-1}\right][T]$
> C. $[F][A][T]$
> D. $[F][A]\left[T^{2}\right]$

Answer:

D Watch Video Solution

21. A lens of large focal length and large aperture is best suited as an objective of an astronomical telescope since:
A. a large aperture contributes to the quality and visiblity of the images.
B. a large area of the objective ensures
better light gathering power
C. a large aperture provides a better resolution
D. all of the above

Answer: D

22. An EM wave of waalength λ is incident on a photosensitive surface of negligible work function. If m mass is of photo electron emitted from the surface has de-broglie wavelength λ_{d} then,

$$
\begin{aligned}
& \text { A. } \lambda=\frac{2 m c\left(\lambda_{d}\right)^{2}}{h} \\
& \text { B. } \lambda=\frac{2 h\left(\lambda_{d}\right)^{2}}{m c} \\
& \text { C. } \lambda=\frac{2 m\left(\lambda_{d}\right)^{2}}{h c} \\
& \text { D. } \lambda_{d}=\frac{2 m c \lambda^{2}}{h}
\end{aligned}
$$

23. Two charged spherical conductors of radius R_{1} and R_{2} are connected by a wire.

Then the ratio of surface charge densities of
the spheres $\frac{\sigma_{1}}{\sigma_{2}}$ is
A. $\sqrt{\frac{R_{1}}{R_{2}}}$
B. $\frac{R_{1}^{2}}{R_{2}^{2}}$
C. $\frac{R_{1}}{R_{2}}$
D. $\frac{R_{2}}{R_{1}}$

Answer:

D Watch Video Solution

24. A nucleus with mass number 240 breaks
into two fragments each of mass number 120,
the binding energy per nucleon of unfragmented nuclei is 7.6 MeV while that of
fragments is 8.5 MeV . The total gain in the binding energy in the process is:
A. 804 MeV

B. 216 MeV

C. 0.9 MeV
D. 9.4 MeV

Answer:

D Watch Video Solution

25. Water falls from a height of 60 m at the rate of $15 \mathrm{~kg} / \mathrm{s}$ to operate a turbine. The losses due to frictional force are 10% of the input
energy. How much power is generated by the

turbine?

A. 12.3 kW
B. 7.0 kW
C. 10.2 kW
D. 8.1 kW

Answer:

D Watch Video Solution

26. If E and G resp. denote energy and gravitational constant then E / G has the dimensions of

$$
\begin{aligned}
& \text { A. }[M]\left[L^{0}\right]\left[T^{0}\right] \\
& \text { B. }\left[M^{2}\right]\left[L^{-2}\right]\left[T^{-1}\right] \\
& \text { C. }\left[M^{2}\right]\left[L^{-1}\right]\left[T^{0}\right] \\
& \text { D. }[M]\left[L^{-1}\right]\left[T^{-1}\right]
\end{aligned}
$$

Answer:

27. The effective resistance of a parallel connection that consists of four wires of equal
length equal area of cross section and same material is 0.25 omega. What will be the effective resistance if they are connected in series?
A. 1Ω
B. 4Ω
C. 0.25Ω
D. 0.5Ω

Answer:

- Watch Video Solution

28. The half life of a radioactive nuclide is 100
hours. The fraction of original activity that will
remain after 150 hours would be:
A. $\frac{2}{3}$
B. $\frac{2}{3 \sqrt{2}}$
C. $\frac{1}{2}$
D. $\frac{1}{2 \sqrt{2}}$

Answer:

D Watch Video Solution

29. An inductor of inductance L, a capacitor of
capacitance C and a resistor of resistance ' R ' are connected in series to an ac source of potential difference ' V ' volts as shown in figure. Potential difference across L, C, R is $40 V$,
$10 \mathrm{~V}, 40 \mathrm{~V}$ resp. The amplitude of current flowing through LCR series circuit is $10 \sqrt{2} \mathrm{~A}$.

The impedance of the circuit is:

A. 4Ω
B. 5Ω
C. $4 \sqrt{2} \Omega$
D. $5 \sqrt{2} \Omega$

Answer:
30. Column 1 - gives certain physical terms associated with flow of current through a metallic conductor

Column II- gives some mathematical relations involving electrical quantities. Match column I and column II with appropriate relations.

(A)	Drift Velocity	(P)
$n e^{2 \rho}$ (B) Electrical Resistivity	(Q)	$n e v_{d}$
(C)	Relaxation Period	SR)
$\frac{e E}{m} T$		
(D) Current Density	(S)	$\frac{E}{J}$

A. (A)-(R), (B)-(P), (C)-(S), (D)-(Q)
B. (A)-(R), (B)-(Q), (C)-(S), (D)-(P)
C. (A)-(R), (B)-(S), (C)-(P), (D)-(Q)
D. (A)-(R), (B)-(S), (C)-(Q), (D)-(P)

Answer:

- Watch Video Solution

31. Polar molecules are the molecules:
A. acquire a dipole moment only when magnetic field is absent
B. having a permanent electric dipole moment
C. having zero dipole moment
D. acquire a dipole moment only in the presence of electric field due to displacement of charges

Answer: B

32. Match column 1 and column 2 and choose correct match from the given choices.

A. (A)-(Q),(B)-(P),(C)-(S),(D)-(R)
B. (A)-(R),(B)-(Q),(C)-(P),(D)-(S)

> C. (A)-(R),(B)-(P),(C)-(S),(D)-(Q)
D. (A)-(Q),(B)-(R),(C)-(S),(D)-(P)

Answer:

D Watch Video Solution

33. A convex lens A of focal length 20 cm and a
concave lens G of focal length 5 cm are kept along the same axis with the distance d between them. If a parallel beam of light
falling on A leaves B as a parallel beam, then

distance d in cm will be

A. 50
B. 80
C. 25
D. 15

Answer: D
(Watch Video Solution
34. A cup of coffee cools from $90^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in
t minutes when the room temperature is $20^{\circ} \mathrm{C}$
. The time taken by a similar cup of coffee to
cool from $80^{\circ} C$ to $60^{\circ} C$ at a room temperature same at $20^{\circ} \mathrm{C}$ is
A. $\frac{10 t}{13}$
B. $\frac{5 t}{13}$
C. $\frac{13 t}{10}$
D. $\frac{13 t}{5}$

Answer:

35. The escape velocity from the earth's surface is v . The escape velocity from the surface of another planet having a radius, four times that of earth and same mass density is
A. $3 v$
B. 4 v
C.v
D. 2 v

Answer:

- Watch Video Solution

36. A body is executing simple harmonic motion with frequency ' n ' the frequency of its potential energy is
A. $3 n$
B. 4 n
C. n
D. 2 n

Answer: D

D Watch Video Solution

37. The number of photons per second on an average emitted by the souce of monochromatic light of wavelength 600 nm when it delivers the power ofd $3.3 \times 10^{\wedge}-3^{`}$ watt will be
A. 10^{16}
B. 10^{15}
C. 10^{18}
D. 10^{17}

Answer:

D Watch Video Solution

38. A dipole is placed in an electric field as
shown. In which directions will it move?
A. towards the left as its PE will decrease
B. towards the right as its PE will increase
C. towards the left as its PE will increase
D. towards the right as its PE will decrease

- Watch Video Solution

39. For a plane $E M$ wave propagating in x direction which one of the following combination gives the correct possible direction for electric field E and magnetic field B resp.?
A. $\hat{j}+\hat{k},-\hat{j}-\hat{k}$
B. $-\hat{j}+\hat{k},-\hat{j}+\hat{k}$
c. $\hat{j}+\hat{k}, \hat{j}+\hat{k}$

$$
\text { D. }-\hat{j}+\hat{k},-\hat{j}-\hat{k}
$$

Answer:

D Watch Video Solution

40. The velocity of a small ball of mass M and density d when dropped in a container filled with glycerine becomes constant after sometime. If the density of glycerine is 'd/2' then the viscous force acting on the ball will be
A. $\frac{3}{2} M g$
B. $2 M g$
C. $M \frac{g}{2}$
D. $M g$

Answer:

D Watch Video Solution

41. A parallel plate capacitor has a uniform electric field \vec{E} in the space between the plates. If the distance between the plates is ' d '
and the area of each plate is ' A ' the energy
stored in the capacitor is

> A. $\frac{\varepsilon_{0} E^{2} A d}{2}$
> B. $\frac{E^{2} A d}{\varepsilon_{0}}$
> C. $\frac{\varepsilon_{0} E^{2}}{2}$
> D. $\left(\varepsilon_{0} E A d\right)$

Answer:

42. A spring is stretched by 5 cm by a force 10 N .

The time period of the oscillations when a mass of 2 Kg is suspended by it is
A. 3.14 s
B. 0.628 s
C. 0.0628s
D. 6.28 s

Answer:

D Watch Video Solution
43. A thick current carrying cable of radius ' R ' carries current 'I' uniformly distributed across
its crosssection. The variation of magnetic field $B(r)$ due to cable with distance ' r ' from the axis of the cable is represented by.

c.

Answer:

D Watch Video Solution

44. Three resistors having resistance r_{1}, r_{2}, r_{3} are connected as shown. The ratio $\frac{i_{3}}{i_{1}}$ of
current in terms of resistance used in circuit is

$$
\begin{aligned}
& \text { A. } \frac{r_{1}}{r_{1}+r_{2}} \\
& \text { B. } \frac{r_{2}}{r_{1}+r_{3}} \\
& \text { C. } \frac{r_{1}}{r_{2}+r_{3}} \\
& \text { D. } \frac{r_{2}}{r_{2}+r_{3}}
\end{aligned}
$$

Answer:

45. A uniform rod of length 200 cm and mass

500 g is balanced on a wedge placed at 40 cm
mark. A mass of 2 Kg is suspended from the rod at 20 cm and another unknown mass m is suspended from the rod at 160 cm mark as
shown in figure. Find value of m such that the rod is in equilibrium.

160 cm
A. $\frac{1}{6} k g$
B. $\frac{1}{12} \mathrm{~kg}$
C. $\frac{1}{2} k g$
D. $\frac{1}{3} k g$

Answer: B

D Watch Video Solution

46. In the product
$\vec{F}=q(\vec{v} \times \vec{B})=q \vec{v} \times\left(B \hat{i}+B \hat{j}+B_{0} \hat{k}\right)$
For $\mathrm{q}=1$ and $\vec{v}=2 \hat{i}+4 \hat{j}+6 \hat{k}$ and
$\vec{F}=4 \hat{i}-20 \hat{j}+12 \hat{k}$. What will be the complete expression for \vec{B} ?

> A. $8 \hat{i}+8 \hat{j}-6 \hat{k}$
> B. $-6 \hat{i}-6 \hat{j}-8 \hat{k}$
> C. $-8 \hat{i}+8 \hat{j}-6 \hat{k}$
> D. $6 \hat{i}-6 \hat{j}-8 \hat{k}$

Answer:

- Watch Video Solution

47. A point object is placed at distance 60 cm
from a convex lens of focal length 30 cm . If a
plane mirror were put perpendicular to principal axis of lens and at distance 40 cm
from it the final image would be formed at distance of:

A. 30 cm from plane mirror it would be a
B. 20 cm from plane mirror it would be a virtual image
C. 20 cm from lens it would be a real image
D. 30 cm from lens it would be a real image

Answer: C

D Watch Video Solution

48. For given circuit the input digital signals are applied at terminal A, B, C. What would be

B.

C.

Answer:

D Watch Video Solution

49. Find the value of angle of emergence from
the prism. Refractive index of the glass

A. 45
B. 90
C. 60
D. 30

Answer: B
50. The equivalent capacitance of combination

A. $\frac{C}{2}$
B. $3 \frac{C}{2}$
C. $3 C$
D. $2 C$

Answer:

- Watch Video Solution

