

MATHS

BOOKS - ARIHANT PRAKASHAN

APPLICATION OF DERIVATIVES

Topic 1 Practice Questions 1 Mark Questions

1. The radius of a spherical soap bubble is increasing at the rate of 0.2 cm/sec. Find the

rate of increase of its surface area, when the

radius is 7 cm. (π = 3.141 approx)

3. Are there two points on the curve $y^2 = x$, where the tangents are parallel to each other?

5. Determine the point on the curve y = ln x, at which the tangent will be parallel to the chord joining the points P(1,0) and Q(e, 1).

7. Find the point on the curves $x = a(\theta - \sin \theta)$ and $y=a(1 - \cos\theta)$, at which the tangent is parallel to X-axis.

Alexander Alexander en el carte de la c

8. Find the slope of the tangent to the curve

$$x=aigg(rac{1-t^2}{1+t^2}igg)$$
 and y= $rac{2at}{1+t^2}$ at t= $rac{1}{\sqrt{3}}$

Watch Video Solution

9. Write the slope of the tangent to the curve

y=
$$\sqrt{3}$$
sinx+cosx at $\left(\frac{\pi}{2}, \sqrt{3}\right)$.

10. What is the slope of the normal to the curve $x^{rac{2}{3}}+y^{rac{2}{3}}=20$ at the point (8, 64)?

Watch Video Solution

11. Find the velocity at the end of 2 s of the particle moving according to the equation $s=t^2-6t^2+15t+12$

12. Find the slope of the tangent to $x = t^2$ and y

= 2t at t = 1.

Topic 1 Practice Questions 4 Mark Questions

1. Find the point on the curve

 $x^2 + y^2 - 4xy + 2 = 0$

where the normal is paralell to the x-asis.

2. A balloon is pumped at the rate of 2 cm^3 / min. .Write the rate of increase of the surface area, when the radius is 0.5 cm.

3. Show that no two normals to a parabola are

parallel.

4. Find the slope of the tangent to the curve

x=2(t-sin t) and y = 2(1-cost) at t=
$$\frac{\pi}{4}$$

Watch Video Solution

5. Find the equation of tangent to the curve $x = y^2 - 2$ at the points where slope of the normal equal to (-2).

6. Find the equation of the normal to the curve

$$5x^2 + 3y^2 = 23$$
 at (2,-1)

Watch Video Solution

7. Show that the line y = mx + c touches the ellips

$$rac{x^2}{a^2}+rac{y^2}{b^2}=1 \ \ ext{if} \ \ c^2=a^2m^2+b^2.$$

8. Show that the length of the portion of the

tangent to $x^{(2/3)} + y^{(2/3)} = a^{(2/3)}$

intercepted between the axes is constant.

9. Find the equation of normal to the curve

$$3y^2=16x$$
 at (3,4).

Watch Video Solution

Topic 1 Practice Questions 6 Mark Questions

1. Show that the sum of the intercepts on the coordinate axes of any tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ is constant.

Watch Video Solution

2. Find the tangent to the curve

 $y=\cos(x+y), 0 < x < 2\pi$

which is parallel to the line x + 2y = 0.

3. If $x \cos \alpha + y \sin \alpha = p$ is a tangent to the

curve

$$\left(rac{x}{a}
ight)^{rac{n}{n}-1}+\left(rac{y}{b}
ight)^{rac{n}{n}-1}=1$$
then so that

 $(a\cos\alpha)^n + (b\sin\alpha)^n = p^n.$

Watch Video Solution

4. Prove that the sum of the cubes of the intercepts on the coordinate axes of any tangent to the curve $x^{rac{3}{4}} + y^{rac{3}{4}} = a^{rac{3}{4}}$ is a constant.

5. (i) If the line y=mx+ c touches the curve y^2 = 4ax, then . prove that mc= a. (ii) Find the equation of normal to the curve given by $x = \cos^3 \theta$ and $y = \sin^3 \theta$ at $\theta = \frac{\pi}{4}$.

6. Water is leaking from a conical funnel at the rate of 5 cm^3/s . If the radius of the base of funnel is 5 cm and height 10 cm, then find the

rate at which the water level is dropping when

it is 2.5 cm from the top.

1. Find the rate at which the volume of a spherical balloon will increase when its radius is 2 meters if the rate of increase of its redius is 0.3 m/min.

2. For the curve $y=5x-2x^3$, if x increase at the

rate of 2 units / s, then how fast is the slope of

curve changing when X =3?

3. The radius of a circle-is increasing uniformly at the rate of 3 cm/s. Find the rate at which, the area of the circle is increasing, when the radius is 10 cm.

Watch Video Solution

4. The total revenue in rupees received from the sale of x units of a product is given by R(x)= $3x^2 + 6x + 5$. Find the marginal revenue, when x =5, where marginal revenue means rate of change of total revenue at any level of ouput.

5. Sand is pouring from a pipe at the rate of 12 cm^3/s . The falling sand from a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm.

6. Find the velocity and acceleration at the end

of 2 s of the particle moving according to the rule $s=rac{3}{2t+1}$

7. Find the acceleration at the end of 2s of the

particlemoving according to the equation

$$s=rac{2-t}{2+t}.$$

8. Find the equations of the tangent and normal to the curve $y=(\log x)^2$ at point $x = \frac{1}{e}$.

Watch Video Solution

9. Find the point on the curve

$$y^2 - x^2 + 2x - 1 = 0$$

where the tangent is parallel to the x - axis.

Watch Video Solution

at which the tangents are parallel to X-axis,

12. Find a point on the curve $f(x)=(x-3)^2$, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1).

Watch Video Solution

13. Find the points on the curve $y = x^3 - 3x^2 + 2x$ at which the tangents to

the curve is parallel to the line y-2x+3 = 0.

14. Show that the curves $y = 2^x$ and $y = 5^x$ intersect at an angle $\tan^{-1} \left| \frac{\ln\left(\frac{5}{2}\right)}{1 + \ln 2\ln 5} \right|$.

Note Angle between two curves is the angle between their tangents at the point of intersection.

$$y^2=4x$$
 and $x^2=4y$ at (4, 4).

Watch Video Solution

Topic 2 Practice Questions 1 Mark Questions

- **1.** If ϕ (x)=f(x)+f(1-x),f..(x)=On for $0 \le x \le 1$, then
- $x=rac{1}{2}$ is a point of maxima or minima of ϕ (x)?

- 2. Write the interval in which the function
- $\sin^2 x x$ is increasing.

3. Write the set of values of x for which the

function f(x) = sinx - x is increasing.

> Watch Video Solution

4. Write a function which has both relative and

absolute maximum at the point (1, 2).

5. Write the maximum value of the function

 $y = x^5$ in the interval [1, 5].

Watch Video Solution

6. Mention the values of x for which the function $f(x) = x^2 - 12x$ is increasing.

7. Write the value of df, if $f(x) = \ln (1 + x)$, x = 1

and &x=0.04.

Watch Video Solution

8. Write the set of points, where the function

 $f(x) = x^3$ has relative (local) extreme.

9. Answer with reasons, whether the following function has a relative (local) maximum at x = 2 or not.

$$f(x) = egin{cases} x & 0 \leq x < 1 \ 1 & 1 \leq x \leq 2 \ 3 - x & 2 < x \leq 3 \end{cases}$$

Watch Video Solution

10. Find an approximate value of $\sqrt{16.04}$ using

differential.

11. In which sub-interval of $\left(0, \frac{\pi}{2}\right)$ is x + 2 cos x

increasing?

13. Find approximately the difference betweenthe volumes of two cubes of sides 3cm and3.04 cm.

15. Determine the sub-interval of $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

, in which f(x) = tan x - 4x is increasing.

Watch Video Solution

16. Using differential, find approximately the difference between the volumes of two cubes of sides 2 cm and 2.01 cm.

, then f(x) has only one minima at x = 0.

19. Find the intervals where function is increasing function $y = \cos x + \sin x, x \varepsilon [0, 2\pi]$ **Watch Video Solution**

20. Write the subinterval of $(0,\pi)$ in which sin

$$\left(x+rac{\pi}{4}
ight)$$
 is increasing.

21. Find the extreme points of the following functions. Specify if the extremum is a maximum or minimum. Find the extreme values. $y = x + rac{1}{x}$

Watch Video Solution

22. For what value of x, is the function

 $f(x) = 3 - 2x^2$ the maximum?

23. What is the interval, in which $y = x^2 + 2x + 3$ $x \in R$ is decreasing?

Watch Video Solution

24. Write the point, where $f(x) = x \log x$ attains

minimum value.

25. Find
$$\delta f$$
 and df when $f(x)=2x^2-1, x=1, \delta x=0\cdot 02$

Topic 2 Practice Questions 4 Mark Questions

2. Find the intervals where function is increasing function y = cos x + sin x,x $\varepsilon[0, 2\pi]$

5. Find the extreme values of the function $y = X + \frac{1}{x}$.

8. Find the maximum value of

y=(1+cosx) sinx,x
$$\varepsilon \left[0, \frac{3\pi}{4}\right]$$

9. Determine the interval in which the function $f(x) = x^3 - 5x^2 + 3x + 97$ is decreasing and that in which it is increasing.

11. Find the intervals in which the function $f(x) = 2x^3 + 9x^2 + 12x + 20$ is increasing and decreasing.

Watch Video Solution

12. If f(x) = a In $x + bx^2 + x$ has extreme values

at x = -1 and x = 2 then find a and b.

Watch Video Solution

Topic 2 Practice Questions 6 Mark Questions

1. Show that the shrtest distance of the point

(0, 8a) from the curve $ax^2=y^3$ is $2a\sqrt{11}.$

Watch Video Solution

2. Find the coordinates of the point on the curve $x^2y - x + y = 0$

where the slope of the tangent is maximum.

3. A cylindrical open water tank with a circular base is to be made out of 30 sq metres of metal sheet. Find the dimensions so that it can hold maximum water. (Neglect thickness of sheet).

4. Shows that the triangle of greatest area that

can be inscribed in a circle is equilateral.

5. Find the minimum distance of a point on the

curve
$$rac{2}{x^2}+rac{1}{y^2}=1$$
 from the origin.

Watch Video Solution

6. Use the function $f(x) = x^{1/x}, x > 0$ to

show that $e^{\pi} > \pi^{e}$.

7. Determine the points of extreme values on

the following curve.

$$y=(x-1)^2(x+2)$$

Watch Video Solution

8. Discuss the extreme value of the function $y = (x+2)^4 (x-1)^5$

9. Show that the rectangle of maximum area that can be inscribed in a given circle is a square.

10. Find the points on the curve $y = x^2 + 1$

which are nearest to the point (0,2).

11. Show that the semivertical angle of a cone of given slant height is $\tan^1 \sqrt{2}$ when its volume is maximum.

12. Find two numbers x and y whose sum is 15 such that xy^2 is maximum.

13. Find the altitude of a right circular cylinder of maximum volume inscribed in a sphere of radius r.

14. Use differential to approximate $(255)^{rac{1}{4}}$

1. Find the interval for the function

$$y = 2x^3 + 3x^2 - 36x - 7$$

(i) increasing (ii) decreasing.

Watch Video Solution

2. Find the intervals where the following functions are (a) increasing and (b) decreasing.

$$egin{aligned} y &= an x - 4(x-2), x \in \ & \left(-rac{\pi}{2}, rac{\pi}{2}
ight) \end{aligned}$$

3. Find the interval for which the function f(x) =

 $x^2 e^{-x}$ is increasing and decreasing.

5. Prove that the function f given by $f(x) = \log x$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ and

strictly decreasing on
$$\left(rac{\pi}{2},\pi
ight)$$

7. If
$$f(x)=egin{cases} 3x+2 & x\leq 0\ 2-3x & x>0 \end{cases}$$

8. Shows that the following functions do not possess maximum or minimum. x^5

Watch Video Solution

9. Determine a rectangle of area 25sq. Units

which has minimum perimeter.

10. Find the extreme points of the following functions. Specify if the extremum is a maximum or minimum. Find the extreme values.

 $y=60\,/\left(x^4-x^2+25
ight)$

Watch Video Solution

11. Let
$$f(x) = \frac{a}{x} + x^2$$
. If it has a maximum at x =-3, then find the value of a.

12. A window is in the form of a rectangle surmounted by a semi-circular opening. The total perimeter of the window is 10m.Find the dinensions of the window to admit

maximum light through the whole opening.

View Text Solution

13. Show that the height of a closed right circular cylinder of given surface and maximum volume is equal to diameter of base.

h Video Colution

16. Find the approximate value of $\sqrt{0.24}$.

Chapter Test 1 Mark Questions

1. Find the slope of the normal for the curve x=

$$t^2$$
 and y= 2t at t = 1.

3. What is the value of δ y, if y = x^2-1 , x=1 and δ

x = 0.02?

4. What is the point of inflexion of the function

 $f(x)=x^{3}?$

5. Find the velocity and acceleration at the end

of 2 seconds of the particle moving according

to the following rules. $s=2t^2+3t+1$

6. Find the slope of tangent to the curve Y=

$$\sqrt{x}+2x+6$$
 at x=4

Watch Video Solution

7. Find the intervals where the curve

 $y = a^x, a > 0, x \varepsilon$ R, is increasing.

8. Shows that the following functions do not

possess maximum or minimum. x^3

9. Evaluate : δy , if = $2x^2 + x - 1, x = 2$ and

 $\delta x = 0.04.$

> Watch Video Solution

Chapter Test 4 Mark Questions

1. Show that the tangents to the curve $y = 7x^3 + 11$ at the points, where x=2 and x=-2 are parallel.

Watch Video Solution

3. Determine a rectangle of area 25sq. Units

which has minimum perimeter.

Watch Video Solution

4. Find the coordinates of the point on the ellipse $16x^2 + 9y^2 = 400$ where the ordinate decreases at the same rate at which the abscissa increases.

5. Find the equations of tangent and normal to

the curve $y=e^x$ at x=0.

Chapter Test 6 Mark Questions

1. Prove that all normals to the curve

 $x = a\cos t + at\sin t, y = a\sin t - at\cos t$ are

at a distance a from the origin.

2. The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate 3 cm/s. How fast is the area decreasing, where the equal sides are equal to the base.

Watch Video Solution

3. A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth is 2 m and volume is 8 m^3 . If building of tank costs 70 per sq m for the base

and 45 per sq m for sides, then what is the cost

of least expensive tank?

5. Find the equasion of the tangents drawn

from the point (1,2) to the curve.

$$y^2 - 2x^3 - 4y + 8 = 0$$

Watch Video Solution

6. Show that the vertical angle of a right circular cone of minimum curved surface that circumscribes a given sphere is $2 \sin^{-1}(\sqrt{2}-1)$

View Text Solution

7. Use differential to approximate $(82)^{1/4}$.

