©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT PRAKASHAN

APPLICATION OF DERIVATIVES

Topic 1 Practice Questions 1 Mark Questions

1. The radius of a spherical soap bubble is
increasing at the rate of $0.2 \mathrm{~cm} / \mathrm{sec}$. Find the
rate of increase of its surface area, when the radius is $7 \mathrm{~cm} .(\pi=3.141$ approx $)$

(Watch Video Solution

2. Write the equation of the tangent to the curve $y=[x]$ at the point $(-2,2)$.

- Watch Video Solution

3. Are there two points on the curve $y^{2}=\mathrm{x}$, where the tangents are parallel to each other?

Give reasons to your answer.

- View Text Solution

4. What is the acceleration at the end of 2 s of the particle that moves with rule $s=\sqrt{t}+1$?

- Watch Video Solution

5. Determine the point on the curve $y=\ln x$, at which the tangent will be parallel to the chord joining the points $P(1,0)$ and $Q(e, 1)$.

- Watch Video Solution

6. What is the acceleration at the end of 3 s of the particle that moves with the rule $s=3 t^{2}+5 t+2$.

- Watch Video Solution

7. Find the point on the curves $\mathrm{x}=\mathrm{a}(\theta-\sin \theta)$
and $\mathrm{y}=\mathrm{a}(1-\cos \theta)$, at which the tangent is parallel to X -axis.
8. Find the slope of the tangent to the curve
$x=a\left(\frac{1-t^{2}}{1+t^{2}}\right)$ and $\mathrm{y}=\frac{2 a t}{1+t^{2}}$ at $\mathrm{t}=\frac{1}{\sqrt{3}}$

(Watch Video Solution

9. Write the slope of the tangent to the curve
$y=\sqrt{3} \sin x+\cos x$ at $\left(\frac{\pi}{2}, \sqrt{3}\right)$.

D Watch Video Solution
10. What is the slope of the normal to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=20$ at the point $(8,64)$?

- Watch Video Solution

11. Find the velocity at the end of 2 s of the particle moving according to the equation $s=t^{2}-6 t^{2}+15 t+12$
(Watch Video Solution
12. Find the slope of the tangent to $x=t^{2}$ and y
$=2 \mathrm{t}$ at $\mathrm{t}=1$.

D Watch Video Solution

Topic 1 Practice Questions 4 Mark Questions

1. Find the point on the curve
$x^{2}+y^{2}-4 x y+2=0$
where the normal is paralell to the x-asis.
(D) Watch Video Solution

2. A balloon is pumped at the rate of $2 \mathrm{~cm}^{3} /$

\min. Write the rate of increase of the surface area, when the radius is 0.5 cm .

- Watch Video Solution

3. Show that no two normals to a parabola are parallel.

- Watch Video Solution

4. Find the slope of the tangent to the curve
$\mathrm{x}=2(\mathrm{t}-\sin \mathrm{t})$ and $\mathrm{y}=2(1-\cos \mathrm{t})$ at $\mathrm{t}=\frac{\pi}{4}$

- Watch Video Solution

5. Find the equation of tangent to the curve $x=y^{2}-2$ at the points where slope of the normal equal to (-2).

- Watch Video Solution

6. Find the equation of the normal to the curve
$5 x^{2}+3 y^{2}=23$ at $(2,-1)$

- Watch Video Solution

7. Show that the line $y=m x+c$ touches the ellips
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ if $\quad c^{2}=a^{2} m^{2}+b^{2}$.
(Watch Video Solution
8. Show that the length of the portion of the
tangent to ${ }^{\prime} x^{\wedge}(2 / 3)+y^{\wedge}(2 / 3)=a^{\wedge}(2 / 3)$
intercepted between the axes is constant.

(Watch Video Solution

9. Find the equation of normal to the curve
$3 y^{2}=16 x$ at $(3,4)$.

D Watch Video Solution

Topic 1 Practice Questions 6 Mark Questions

1. Show that the sum of the intercepts on the coordinate axes of any tangent to the curve
$\sqrt{x}+\sqrt{y}=\sqrt{a}$ is constant.

- Watch Video Solution

2. Find the tangent to the curve
$y=\cos (x+y), 0<x<2 \pi$
which is parallel to the line $x+2 y=0$.
3. If $x \cos \alpha+y \sin \alpha=p$ is a tangent to the

curve

$\left(\frac{x}{a}\right)^{\frac{n}{n}-1}+\left(\frac{y}{b}\right)^{\frac{n}{n}-1}=1$ then so that
$(a \cos \alpha)^{n}+(b \sin \alpha)^{n}=p^{n}$.

- Watch Video Solution

4. Prove that the sum of the cubes of the intercepts on the coordinate axes of any tangent to the curve $x^{\frac{3}{4}}+y^{\frac{3}{4}}=a^{\frac{3}{4}}$ is a constant.
5. (i) If the line $y=m x+c$ touches the curve $y^{2}=$ 4ax, then . prove that $m c=a$.
(ii) Find the equation of normal to the curve given by $x=\cos ^{3} \theta$ and $y=\sin ^{3} \theta$ at $\theta=\frac{\pi}{4}$.

D Watch Video Solution

6. Water is leaking from a conical funnel at the rate of $5 \mathrm{~cm}^{3} / \mathrm{s}$. If the radius of the base of
funnel is 5 cm and height 10 cm , then find the
rate at which the water level is dropping when
it is 2.5 cm from the top.

- Watch Video Solution

7. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangent passes through the origin.

- Watch Video Solution

Topic Test 1

1. Find the rate at which the volume of a spherical balloon will increase when its radius
is 2 meters if the rate of increase of its redius is $0.3 \mathrm{~m} / \mathrm{min}$.

D Watch Video Solution

2. For the curve $y=5 x-2 x^{3}$, if x increase at the rate of 2 units $/ \mathrm{s}$, then how fast is the slope of
curve changing when $X=3$?
3. The radius of a circle-is increasing uniformly at the rate of $3 \mathrm{~cm} / \mathrm{s}$. Find the rate at which, the area of the circle is increasing, when the radius is 10 cm .

(Watch Video Solution

4. The total revenue in rupees received from
the sale of x units of a product is given by $R(x)=$
$3 x^{2}+6 \mathrm{x}+5$. Find the marginal revenue, when x
$=5$, where marginal revenue means rate of change of total revenue at any level of ouput.

- Watch Video Solution

5. Sand is pouring from a pipe at the rate of 12
$\mathrm{cm}^{3} / \mathrm{s}$. The falling sand from a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm .
6. Find the velocity and acceleration at the end of 2 s of the particle moving according to the rule $s=\frac{3}{2 t+1}$

- Watch Video Solution

7. Find the acceleration at the end of $2 s$ of the particlemoving according to the equation $s=\frac{2-t}{2+t}$.
8. Find the equations of the tangent and normal to the curve $\mathrm{y}=(\log x)^{2}$ at point $\mathrm{x}=\frac{1}{e}$.

- Watch Video Solution

9. Find the point on the curve
$y^{2}-x^{2}+2 x-1=0$
where the tangent is parallel to the x -axis.

- Watch Video Solution

10. Find the equation of the normal to the curve given by $x=3 \cos \theta-\cos ^{3} \theta$ and $y=3 \sin \theta-\sin ^{3} \theta$ at $\theta=\frac{\pi}{4}$

- Watch Video Solution

11. Find the points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$, at which the tangents are parallel to X -axis,
12. Find a point on the curve $\mathrm{f}(\mathrm{x})=(x-3)^{2}$, where the tangent is parallel to the chord joining the points $(3,0)$ and $(4,1)$.

- Watch Video Solution

13. Find the points on the curve $y=x^{3}-3 x^{2}+2 x$ at which the tangents to the curve is parallel to the line $y-2 x+3=0$.
14. Show that the curves $y=2^{x}$ and $y=5^{x}$
intersect at an angle $\tan ^{-1}\left|\frac{1 n\left(\frac{5}{2}\right)}{1+1 n 21 n 5}\right|$.
Note Angle between two curves is the angle between their tangents at the point of intersection.

- Watch Video Solution

15. Find the angle of intersection of the curves
$y^{2}=4 x$ and $x^{2}=4 y$ at $(4,4)$.

Topic 2 Practice Questions 1 Mark Questions

1. If $\phi(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{f}(1-\mathrm{x}), \mathrm{f} . .(\mathrm{x})=\mathrm{On}$ for $0 \leq x \leq 1$, then
$x=\frac{1}{2}$ is a point of maxima or minima of $\phi(\mathrm{x})$?
D View Text Solution
2. Write the interval in which the function
$\sin ^{2} x-x$ is increasing.
3. Write the set of values of x for which the
function $f(x)=\sin x-x$ is increasing.

(Watch Video Solution

4. Write a function which has both relative and absolute maximum at the point $(1,2)$.

D View Text Solution

5. Write the maximum value of the function $y=x^{5}$ in the interval $[1,5]$.

- Watch Video Solution

6. Mention the values of x for which the
function $f(x)=x^{2}-12 x$ is increasing.

7. Write the value of $d f$, if $f(x)=\ln (1+x), x=1$

 and $\& x=0.04$.
- Watch Video Solution

8. Write the set of points, where the function
$f(x)=x^{3}$ has relative (local) extreme.

- Watch Video Solution

9. Answer with reasons, whether the following
function has a relative (local) maximum at $x=2$ or not.
$f(x)= \begin{cases}x & 0 \leq x<1 \\ 1 & 1 \leq x \leq 2 \\ 3-x & 2<x \leq 3\end{cases}$

(D) Watch Video Solution

10. Find an approximate value of $\sqrt{16.04}$ using differential.
11. In which sub-interval of $\left(0, \frac{\pi}{2}\right)$ is $\mathrm{x}+2 \cos \mathrm{x}$ increasing?

D Watch Video Solution

12. Write df, when
 $f(x)=\sqrt{x}, x=4$ and $\Delta x=0.2$.

Watch Video Solution
13. Find approximately the difference between
the volumes of two cubes of sides 3 cm and 3.04 cm .

- Watch Video Solution

14. Determine the interval in which
$g(x)=\frac{x^{2}+3 x+3}{x+1}$ is decreaing.
15. Determine the sub-interval of $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
,in which $f(x)=\tan x-4 x$ is increasing.

- Watch Video Solution

16. Using differential, find approximately the difference between the volumes of two cubes of sides 2 cm and 2.01 cm .

- Watch Video Solution

17.

Prove
that,
$f(x)=a_{0}+a_{1} x^{2}+a_{2} x^{4}$ and $0<a_{0}<a_{1}<a_{2}$
, then $f(x)$ has only one minima at $x=0$.

D Watch Video Solution

18. Find the open interval in which
$f(x)=x^{\frac{1}{x}}, x>0$ is decreasing.

- Watch Video Solution

19. Find the intervals where function is increasing function $\mathrm{y}=\cos \mathrm{x}+\sin \mathrm{x}, \mathrm{x} \varepsilon[0,2 \pi]$

(Watch Video Solution

20. Write the subinterval of $(0, \pi)$ in which sin
$\left(x+\frac{\pi}{4}\right)$ is increasing.

D Watch Video Solution
21. Find the extreme points of the following
functions. Specify if the extremum is a maximum or minimum. Find the extreme values. $y=x+\frac{1}{x}$

D Watch Video Solution

22. For what value of x, is the function
$f(x)=3-2 x^{2}$ the maximum?
23. What is the interval, in which $y=x^{2}+2 x+3 \quad x \varepsilon R$ is decreasing?

- Watch Video Solution

24. Write the point, where $f(x)=x \log x$ attains minimum value.

- Watch Video Solution

> 25. Find $\delta f \quad$ and \quad df when
> $f(x)=2 x^{2}-1, x=1, \delta x=0 \cdot 02$

(D) Watch Video Solution

Topic 2 Practice Questions 4 Mark Questions

1. Find the intervals in which the function
$y=\frac{\ln x}{x}$ is increasing and decreasing.

- Watch Video Solution

2. Find the intervals where function is increasing function $\mathrm{y}=\cos \mathrm{x}+\sin \mathrm{x}, \mathrm{x} \varepsilon[0,2 \pi]$

Watch Video Solution

3. Show that $2 \sin x+\tan x \geq 3 x$ for all $x \varepsilon\left(0, \frac{\pi}{2}\right)$.

D Watch Video Solution

4. Find approximate values of the following :
$\sqrt[6]{63}$

D Watch Video Solution

5. Find the extreme values of the function
$y=X+\frac{1}{x}$.

- Watch Video Solution

6. Show that the function $\frac{e^{x}}{x^{p}}$ is strictly increasing for $x>p>0$.

D Watch Video Solution

7. Find the interval where $y=\sin x-\cos x$ $x \in[0,2 \pi]$ is increasing.

- Watch Video Solution

8. Find the maximum value of
$y=(1+\cos x) \sin x, x \varepsilon\left[0, \frac{3 \pi}{4}\right]$

D Watch Video Solution

9. Determine the interval in which the function
$\mathrm{f}(\mathrm{x})=x^{3}-5 x^{2}+3 x+97$ is decreasing and that in which it is increasing.

- Watch Video Solution

10. Find the approximate value of $(26.9)^{\frac{1}{3}}$

D Watch Video Solution

11. Find the intervals in which the function
$f(x)=2 x^{3}+9 x^{2}+12 x+20$ is increasing and decreasing.

(Watch Video Solution

12. If $\mathrm{f}(\mathrm{x})=\mathrm{a} \ln x+b x^{2}+x$ has extreme values at $x=-1$ and $x=2$ then find a and b .
(D) Watch Video Solution

Topic 2 Practice Questions 6 Mark Questions

1. Show that the shrtest distance of the point $\left(0,8\right.$ a) from the curve $a x^{2}=y^{3}$ is $2 a \sqrt{11}$.

D Watch Video Solution
2. Find the coordinates of the point on the
curve $x^{2} y-x+y=0$
where the slope of the tangent is maximum.

D Watch Video Solution
3. A cylindrical open water tank with a circular base is to be made out of 30 sq metres of metal sheet. Find the dimensions so that it can
hold maximum water. (Neglect thickness of sheet).

- Watch Video Solution

4. Shows that the triangle of greatest area that can be inscribed in a circle is equilateral.
5. Find the minimum distance of a point on the
curve $\frac{2}{x^{2}}+\frac{1}{y^{2}}=1$ from the origin.

- Watch Video Solution

6. Use the function $f(x)=x^{1 / x}, x>0$ to show that $e^{\pi}>\pi^{e}$.

- Watch Video Solution

7. Determine the points of extreme values on the following curve.
$y=(x-1)^{2}(x+2)$

- Watch Video Solution

8. Discuss the extreme value of the function

$$
y=(x+2)^{4}(x-1)^{5}
$$

9. Show that the rectangle of maximum area
that can be inscribed in a given circle is a square.

(Watch Video Solution

10. Find the points on the curve $y=x^{2}+1$ which are nearest to the point $(0,2)$.

- Watch Video Solution

11. Show that the semivertical angle of a cone of given slant height is $\tan ^{1} \sqrt{2}$ when its volume is maximum.

- Watch Video Solution

12. Find two numbers x and y whose sum is 15
such that $x y^{2}$ is maximum.

- Watch Video Solution

13. Find the altitude of a right circular cylinder
of maximum volume inscribed in a sphere of radius r .

- Watch Video Solution

14. Use differential to approximate $(255)^{\frac{1}{4}}$

- Watch Video Solution

Topic Test 2

1. Find the interval for the function
$y=2 x^{3}+3 x^{2}-36 x-7$
(i) increasing (ii) decreasing.

D Watch Video Solution

2. Find the intervals where the following functions are (a) increasing and (b) decreasing. $y=\tan x-4(x-2), x \in$
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
3. Find the interval for which the function $f(x)=$ $x^{2} e^{-x}$ is increasing and decreasing.

D Watch Video Solution

4. Prove that $\ln (1+x)<x$ for $x>0$.
(D) Watch Video Solution
5. Prove that the function f given by $f(x)=$ logsin x is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ and
strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$

D Watch Video Solution

> 6. Find extreme value of
> $f(x) .=\left\{\begin{array}{ll}\frac{x}{1-x^{2}} & -1<x<0 \\ x^{3}-x & 0 \leq x<2\end{array}\right.$ on (-1,2)

D Watch Video Solution

7. If $f(x)= \begin{cases}3 x+2 & x \leq 0 \\ 2-3 x & x>0\end{cases}$
8. Shows that the following functions do not possess maximum or minimum. x^{5}

(Watch Video Solution

9. Determine a rectangle of area 25 sq. Units which has minimum perimeter.

D Watch Video Solution

10. Find the extreme points of the following
functions. Specify if the extremum is a maximum or minimum. Find the extreme values.
$y=60 /\left(x^{4}-x^{2}+25\right)$

- Watch Video Solution

11. Let $\mathrm{f}(\mathrm{x})=\frac{a}{x}+x^{2}$. If it has a maximum at x $=-3$, then find the value of a.
12. A window is in the form of a rectangle surmounted by a semi-circular opening. The total perimeter of the window is 10 m .

Find the dinensions of the window to admit maximum light through the whole opening.

D View Text Solution

13. Show that the height of a closed right circular cylinder of given surface and maximum
volume is equal to diameter of base.

14. Find δf and df when $f(x)=\sqrt{x}, x=16, \delta x=0.3$

- Watch Video Solution

15. Find the approximate value of $\sqrt[5]{63}$

- Watch Video Solution

16. Find the approximate value of $\sqrt{0.24}$.
17. Find the approximate value of $f(3.02)$, where $\mathrm{f}(\mathrm{x})=3 x^{2}+5 x+3$.

- Watch Video Solution

Chapter Test 1 Mark Questions

1. Find the slope of the normal for the curve $x=$
t^{2} and $\mathrm{y}=2 \mathrm{t}$ at $\mathrm{t}=1$.

Watch Video Solution

2. Write the subinterval of $(0, \pi)$ in which sin $\left(x+\frac{\pi}{4}\right)$ is increasing.

(Watch Video Solution

3. What is the value of $\delta \mathrm{y}$, if $\mathrm{y}=x^{2}-1, \mathrm{x}=1$ and δ $x=0.02$?
4. What is the point of inflexion of the function $\mathrm{f}(\mathrm{x})=x^{3}$?

- Watch Video Solution

5. Find the velocity and acceleration at the end of 2 seconds of the particle moving according to the following rules. $s=2 t^{2}+3 t+1$
6. Find the slope of tangent to the curve $Y=$ $\sqrt{x}+2 x+6$ at $\mathrm{x}=4$

- Watch Video Solution

7. Find the intervals where the curve $y=a^{x}, a>0, x \varepsilon \mathrm{R}$, is increasing.
8. Shows that the following functions do not possess maximum or minimum. x^{3}

D Watch Video Solution

9. Evaluate : δy, if $=2 x^{2}+x-1, x=2$ and
$\delta x=0.04$.

D Watch Video Solution

Chapter Test 4 Mark Questions

1. Show that the tangents to the curve $y=7 x^{3}+11$ at the points, where $x=2$ and $x=-$

2 are parallel.

- Watch Video Solution

2. Prove that the function given by $f(x)=x^{3}-3 x^{2}+3 x-100$ is increasing in R.

- Watch Video Solution

3. Determine a rectangle of area 25 sq . Units which has minimum perimeter.

- Watch Video Solution

4. Find the coordinates of the point on the ellipse $16 x^{2}+9 y^{2}=400$ where the ordinate decreases at the same rate at which the abscissa increases.
5. Find the equations of tangent and normal to the curve $\mathrm{y}=e^{x}$ at $\mathrm{x}=0$.

(D) Watch Video Solution

Chapter Test 6 Mark Questions

1. Prove that all normals to the curve
$x=a \cos t+a t \sin t, y=a \sin t-a t \cos t$ are
at a distance a from the origin.
2. The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate 3 cm / s. How fast is the area decreasing, where the equal sides are equal to the base.

D Watch Video Solution

3. A tank with rectangular base and rectangular
sides, open at the top is to be constructed so
that its depth is 2 m and volume is $8 \mathrm{~m}^{3}$. If building of tank costs 70 per sq m for the base
and 45 per sq m for sides, then what is the cost of least expensive tank?

- Watch Video Solution

4. Find the intervals in which the function f is
given by $\mathrm{f}(\mathrm{x})=\frac{4 \sin x-2 x-x \cos x}{2+\cos x}$, if
(i)increasing (ii) decreasing

- Watch Video Solution

5. Find the equasion of the tangents drawn
from the point $(1,2)$ to the curve.
$y^{2}-2 x^{3}-4 y+8=0$

- Watch Video Solution

6. Show that the vertical angle of a right circular cone of minimum curved surface that circumscribes a given sphere is 2 $\sin ^{-1}(\sqrt{2}-1)$
7. Use differential to approximate $(82)^{1 / 4}$.

- Watch Video Solution

