

MATHS

BOOKS - ARIHANT PRAKASHAN

AREA UNDER PLANE CURVES

Practice Questions Exams Questions

1. Find by integration the area bounded by the

straight lines y = 0, y = x and x + 2y = 3.

2. Find the area of region bounded by the curve $y^2=4x$ and the line x=4.

Watch Video Solution

3. Find the area of the trapezium bounded by the sides y=x, x=0, y=3, y=4.

4. What is the area bounded by

$$x = e^y, x = 0, y = 0 \text{ and } y = 1$$
?

5. Write the area bounded by $y=-2x, y=0, x=1 ext{ and } x=3.$

6. Find the area of the region bounded by the curve $y=x^3, y=x+6 \, ext{ and } \, x=0.$

Watch Video Solution

7. Find the area enclosed bt the two paraboles $y^2=4$ ax and $x^2=4$ ay.

8. Find the area of the circle

$$x^2 + y^2 = 2ax.$$

Watch Video Solution

9. Find the area of the region bounded by the curve $y = \sin x$ and the straight lines

$$x=\,-\,rac{\pi}{4}, x=rac{\pi}{4}$$
 and $y=0.$

10. Find the area bounded by the curve $xy=c^2$, the y=0 and $x=2,\,x=3$.

Watch Video Solution

11. Determine the area of the region bounded by $y^2=x^3$ and the double ordinate through (2,0).

12. Find the area enclosed between the parabola $y^2=4ax$ and the line y=mx.

Watch Video Solution

13. Find the area of the region bounded by the curve y=x, X-axis, x=-2 and x=2.

14. Find the area bounded by

$$y=e^x, y=0, x=6$$
 and $x=2$.

Watch Video Solution

15. Find the area of the region between the curves $y=\cos x$ and $y=\sin x, x\in \left|0,rac{\pi}{4}\right|$

16. Find the area of the region included between the parabola $y^2=2x$ and the straight line x - y = 4.

Watch Video Solution

17. Find the area enclosed by $y^2=x^3$ and x = 0, y = 2.

18. The latus rectum of the ellipse $rac{x^2}{25} - rac{y^2}{16} = 1$ are same .

Watch Video Solution

19. Show that the area bounded by the parabolas $y^2=4x$ and $x^2=4y$ is equal to the area bounded by the curve $x^2=4y$ and the lines y=0 and x=4.

Practice Questions Important Questions

1. Express the area of a triangle with vertices at the points (0,0),(1,1),(3,0) as the sum of two integrals.

Watch Video Solution

2. What is the area bounded by $y=x,\,y=0$, x=0 and x=1 ?

3. Find the area boundede by $y=\sin x,\,y=0$ and $x=\pi$

Watch Video Solution

4. Using integration, find the area of the region bounded between the line x=2 and the parabola $y^2=8x$.

5. Write the formula in integral from for calculating the area bounded by the curves $y=4x^2,\,x=0,\,y=1\,\mathrm{and}\,y=4.$

Watch Video Solution

6. Find the area of the parabola $y^2=4ax$ bounded by its latusrectum.

7. Find the area lying above the X-axis under the parabola $y=4x-x^2$,x=4, x=2

Watch Video Solution

8. Using integration, find the area of enclosed by the circle $x^2+y^2=a^2$.

9. Find the area of the region bounded by the curve $y=x^3, y=x+6$ and x=0.

Watch Video Solution

10. Sketch the region common to the circle $x^2+y^2=16$ and the parabola $x^2=6y$. Also, find the area of the region using integration.

1. Find the area bounded by the curve $y=\sin x$ between x=0 and $x=\pi$

Watch Video Solution

2. Find the area enclosed by

$$y = e^x, x = 0, y = 2, y = 4.$$

3. Find the area of the regions into which the circle $x^2+y^2=4$ is divided by the line $x+\sqrt{3}y=2$.

Watch Video Solution

4. Find the area between the curve $x^2=4ay$, X-axis and ordinate x=2.

5. Find the area bounded by

$$y^2 = x^3, x = 0, y = 9.$$

6. Find the area of the portion of the parabola $y^2=4x$ bounded by the double ordinate through(3,0).

7. Determine the area within the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Watch Video Solution

8. Find the area bounded by

$$xy=a^2,y=0,x=lpha,x=eta(eta>lpha)$$

9. Find the area between the curve

$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$
 and the straight line $rac{x}{a}+rac{y}{b}=1$ in first quadrant.

10. Using integration find the area of triangular region ABC whose sides have the equation y=2x+1, y=3x+1 and x=4.

11. Using integration, find the area of the region bounded between the line x=2 and the parabola $y^2=8x$.

