びdoubtnut

 India's Number 1 Education App
MATHS

BOOKS - ARIHANT PRAKASHAN

CHSE ODISHA EXAMINATION PAPER 2020

Group A 10 Marks 1 Answer All Questions

1. A is a square matrix of order 3 . write the value $\mathrm{n},|2 A|=n|A|$.

- Watch Video Solution

2. A discrete random variable X has the probability distribution as given below:

- View Text Solution

3. Write the differentiate coefficient of $\tan ^{-1}\left(\frac{\sin x+\cos x}{\cos x-\sin x}\right)$ with respect to x .

- Watch Video Solution

4. If $f(x)=\sin x+2$ in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, what can you say about the greatest value of $f(x)$?

- Watch Video Solution

5. If $\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos x \operatorname{In} \frac{1+x}{1-x} d x=k I n^{2}$ then write the value of k .

- Watch Video Solution

6. Write the differential equation of all non-horizontal lines in a plane.
7. IF \vec{a} and \vec{b} are unit vectors and $\vec{a}-\vec{b}$ is also a unit vector, then write the angle between \vec{a} and \vec{b}

- Watch Video Solution

8. Write the axis to which the plane by $+\mathrm{cz}+\mathrm{d}=0$ is parallal.

- Watch Video Solution

9. Write down all the partitions of the set $\{a, b, c\}$.

- Watch Video Solution

10. Write the domain of the function defined by $\mathrm{f}(\mathrm{x})=\sin ^{-1} x+\cos x$

Group B 60 Marks 2 Answer Any Three Questions

1. A man plans to start a poultry farm by investing at most ₹ 3000 . He can buy old hens for ₹ 80 each and young ones for ₹ 140 each, but he cannot house more than 30 hens. Old hens lay 4 eggs per week ,each ell bing sold at ₹5. It costs ₹ 5 to feed an old hen and ₹8 to feed a young hen per week. Formulate his problem determining the number of hens of each type he should buy so as to earn a proft of more than ₹ 300 per week.

- Watch Video Solution

2. Test whether the relation : $R=\{(m, n): 2 \mid(m+n)\}$ on \mathbb{Z} is reflexive, symmetric or transitive.

- Watch Video Solution

3. Prove that for any $f: X \rightarrow Y$, foid $_{x}=f=i d_{Y}$ of.

(Watch Video Solution

4. Solve equation $3 \tan ^{-1} \frac{1}{(2+\sqrt{3})}-\tan ^{-1} \frac{1}{x}=\tan ^{-1} \frac{1}{3}$

- Watch Video Solution

5. Prove that $\tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)=\frac{2 b}{a}$

- Watch Video Solution

Group B 60 Marks 3 Answer Any Three Questions

1. Four cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.

Calculate the mean and variance of the number of aces.
2. Find the inverse of the matrix $\left[\begin{array}{ll}4 & -2 \\ 3 & 1\end{array}\right]$

- Watch Video Solution

3. There are two families A and B. There are 4 men, 6 women and 2 children in family A and 2 men, 2 women and 4 children in family B. The recommended daily amount of calories is 2400 for men, 1900 for women and 1800 for children, and 45 g of proteins for men, 55 g for women and 33 g for children. Represent the above information by matrices. Using matrices multiplication, calculate the total requirement of calories and proteins for each of the 2 families.

- Watch Video Solution

4. Eliminate x, y, z from
$a=x / y-z, b=y / z-x, c=z / x-y$

- Watch Video Solution

5. There are 25 girls and 15 boys in class XI and 30 boys and 20 girls in class XII. If a student chosen from a class, selected at random, happens to be a boy, find the probability that he has been chosen from class XII.

- Watch Video Solution

Group B 60 Marks 4 Answer Any Three Questions

1. Show that the tangent to the curve $x=a(t-\sin t), y=a t(1+\cos t)$
at
$t=\frac{\pi}{2}$ has slope.(1-pi/2)

- Watch Video Solution

2. Examine the contiunity of the following functions at the indicated points $f(x)=\left\{\begin{array}{ll}2 x+1 & \text { if } x \leq 0 \\ x & \text { if } 0<x<1 \text { at } x=0,1 \text {. } \\ 2 x-1 & \text { if } x \geq 1\end{array}\right.$.
3. If $\sin (x+y)=y \cos (x+y)$ then prove that
$\frac{d y}{d x}=-\frac{1+y^{2}}{y^{2}}$

- Watch Video Solution

4. What is the derivative of $\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right)$, with respect to $\left(\sqrt{1-x^{2}}\right)$?

- Watch Video Solution

5. Find the approximate value of $\sqrt{48.96}$

- Watch Video Solution

1. Solve : $\operatorname{In}\left(\frac{d y}{d x}\right)=3 x+4 y$ given that $\mathrm{y}=0$, when $\mathrm{x}=0$.

- Watch Video Solution

2. Evaluate $\int \frac{3 \sin x+28 \cos x}{5 \sin x+6 \cos x} d x$

- View Text Solution

3. Evaluate the following integrals:
$\int_{0}^{\pi / 2} \log \left|\frac{4+3 \sin x}{4+3 \cos x}\right| d x$.

- Watch Video Solution

4. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$. Find the value of a.

- Watch Video Solution

5. Solve: $x \frac{d y}{d x}+y=y^{2} \ln x$

- Watch Video Solution

Group B 60 Marks 6 Answer Any Three Questions

1. Prove that the measure of the angle between two main diagonals of a cube is $\cos ^{-1} \frac{1}{3}$.

- Watch Video Solution

2. Prove that the four points with position vectors $2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c}$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar.

- Watch Video Solution

3. If $\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ then verify that $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b}.

- Watch Video Solution

4. Passing throughthe point $(2,-3,1)$ and $(-1,1-7)$ and perpendicular to the plane $x-2 y+5 z+1=0$.

- Watch Video Solution

5. Find the perpendicular distance of the point $(-1,3,9)$ from the line $\frac{x-13}{5}=\frac{y+8}{-8}=\frac{z-31}{1}$

- Watch Video Solution

1. Find the solution of the following differential equations:
$(4 x+6 y+5) d x-(2 x+3 y+4) d y=0$

- Watch Video Solution

2. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$.

- Watch Video Solution

3. Evaluate $\int \frac{x^{5}+x^{4}+x^{3}+x^{2}+4 x+1}{x^{3}+1} d x$

- Watch Video Solution

1. Show that \vec{a}, \vec{b} and \vec{c} are coplanar if $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are coplanar.

- Watch Video Solution

2. Find the shortest distance between the following two lines:
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}, \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$
Find also the equations of the line of shortest distance.

- View Text Solution

Group C 30 Marks 9 Answer Any One Questions

1. Solve the following LPP graphically Optimize $Z=5 x_{1}+25 x_{2}$ subject to $-0.5 x_{1}+x_{2} \leq 2, x_{1}+x_{2} \geq 2,-x_{1}+5 x_{2} \geq 5, x_{1}, x_{2} \geq 0$

- Watch Video Solution

2.

$\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$ prove that $x^{4}+y^{4}+z^{4}+4 x^{2} y^{2} z^{2}=2\left(x^{2} ?\right.$

- Watch Video Solution

3. Show that the operation defined on ($0,1,2,3,4$) by $a=b=a \times b(\bmod$
5) is a binary operation, Test whether it is associative and commutative.

Test whether the identify exists, if the exists, investigate about the inverse for each element.

- View Text Solution

Group C 30 Marks 10 Answer Any One Questions

1. The probability of a shooter hitting a target is $\frac{3}{4}$ Find the minimum number of times he must fire, so that the probability of hitting the target atleast once is greater than 0.999 .
2. Prove the following:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
(b+c)^{2} & a^{2} & b c \\
(c+a)^{2} & b^{2} & c a \\
(a+b)^{2} & c^{2} & a b
\end{array}\right]} \\
& =\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)(b-c)(c-a)(a-b)
\end{aligned}
$$

- Watch Video Solution

3. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are matrices of order 2×2 each and $2 A+B+C=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$
$A+B+C=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$
$A+B-C=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$ find A, B and C .

- Watch Video Solution

Group C 30 Marks 11 Answer Any One Questions

1. If $y=x^{\sin x}+x^{3} \frac{\sqrt{x^{2}+4}}{\sqrt{x^{3}+3}}$ find $\frac{d y}{d x}$.
2. Show that the semivertical angle of a cone of given slant height is $\tan ^{1} \sqrt{2}$ when its volume is maximum.
