©゙doubtnut

MATHS

BOOKS - ARIHANT PRAKASHAN

RELATIONS AND FUNCTIONS

Topic 01 Practice Question Exam Textbook S Other Imp Questions 1 Mark Questions

1. $A R$ is a relation on set A such that $R=R^{-1}$, then write the type of the relation
R.

- Watch Video Solution

2. Sets A and B have respectively m and n elements. The total number of relations from set A to set B is 64 . If $m<n$ and $m \neq 1$, write the values of m and n, respectively.

- Watch Video Solution

3. If $R=\left\{\left(a, a^{3}\right)\right.$: a is prime number less
than 5$\}$ be a relation. Find the range of R.

D Watch Video Solution

4. If $R=\{(x, y): x+2 y=8\}$ is a relation on
N, then write the range of R.
(Watch Video Solution
5. State the reason for the relation R in the set
$\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ not to be transitive.

- Watch Video Solution

6. Let R is the equivalence in the set $A=\{0,1,2$,
$3,4,5\}$ given by $R=\{(a, b): 2$ divides $(a-b)\}$.
Write the equivalence class [0].

- Watch Video Solution

7. Find the least positive integer .r. such that $185 \in[r]_{7}$.

- Watch Video Solution

8. If X and Y are sets containing m and n elements respectively then what is the total number of function from X to Y ?
(D) Watch Video Solution
9. Show that the function $f: R \rightarrow R$ defined
by $f(x)=\frac{x}{x^{2}+1}$ is neither one-one nor onto.

D Watch Video Solution

10. If $A=\{1,2,3\}, B=\{4,5,6,7\}$ and $f=\{(1,4),(2$,
5), $(3,6)$ \} is a function from A to B. State whether f is one-one or not.
11. What is the range of the function
$f(x)=\frac{|x-1|}{x-1}, x \neq 1 ?$

- Watch Video Solution

12. Write fog, if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$.

- Watch Video Solution

13. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=\sin x$ and $g(x)=x^{5}$, then find $\operatorname{gof}(\mathrm{x})$.

- Watch Video Solution

14.

$f:\{1,3,4\} \rightarrow\{1,2,5\}$ and $g:\{1,2,5\} \rightarrow\{1,3\}$
given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2$,
$3),(5,1)\}$. Write down gof.

- Watch Video Solution

15. Show that $f(x)=\sin x$ on $[0, p i / 2]$ functions are injective.

D Watch Video Solution

16. Let $f=\{(1,3),(2,4),(3,7)\}$ and $g=\{(3,2),(4,3)$,
$(7,1)$ \} determine gof?

(Watch Video Solution

Topic 01 Practice Question Exam Textbook S Other Imp Questions 4 Marks Questions

1. Let R be the relation on the set R of real numbers such that $a R b$ iff $a-b$ is and integer.

Test whether R is an equivalence relation. If so
find the equivalence class of 1 and $\frac{1}{2}$ wrt. This equivalence relation.

D Watch Video Solution

2. Show that the relation R on the set A of real numbers defined as $R=\{(a, b)$: $a \leq b)$.is reflexive. and transitive but not symmetric.
3. If Z is the set of all integers and R is the relation on Z defined as
$R=\{(a, b): a, b \in Z$ and $a-b$ is divisible by 3. Prove that R is an equivalence relation.

D Watch Video Solution

4. If $f: X \rightarrow Y$ is a function. Define a relation
R on X given by $R=\{(a, b)$: $f(a)=f(b)\}$. Show that R is an equivalence relation on X.
5. Show that the relation R on $I \mathbb{R}$ defined as
$R=\{(a, b):(a \leq b)\}, \quad$ is reflexive and transitive but not symmetric.

- Watch Video Solution

6. If $A=\{1,2,3, \ldots, 9\}$ and R is the relation in $A \times$

A defined by (a, b) R (c, d), if $a+d=b+c$ for
(a, b), (c, d) in $A \times A$. Prove that R is an equivalence relation.

D Watch Video Solution

7. Check whether the relation R defined on the set $A=\{1,2,3,4,5,6\}$ as $R=\{(a, b): b=a+1\}$ is reflexive, symmetric or transitive.

D Watch Video Solution

8. Let R be the set of all non -zero real numbers. Then show that $f: R \rightarrow R$ given by
$\mathrm{f}(\mathrm{x})=\frac{1}{x}$ is one- one and onto.

- Watch Video Solution

9. Show that a function $f: R \rightarrow R$ given by $f(x)=3 x+5$ is a bijective.

D Watch Video Solution

10. If $f: N \rightarrow N$ is defined by.
$f(n)=\left\{\begin{array}{l}\frac{n+1}{2}, \text { if } \mathrm{n} \text { is odd } \\ \frac{n}{2}, \text { if } \mathrm{n} \text { is even }\end{array}\right.$ for all $n \in N$.
Find whether the function f is bijective.

- Watch Video Solution

11. If the function $f: R \rightarrow R$ is given by $f(x)=\frac{x+3}{3}$ and $g: R \rightarrow R \quad$ is given $g(x)=2 x-3$, then find
(i) fog (ii) gof.

Is $f^{-1}=g$?

(Watch Video Solution

12. If $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$, for all $x \in A$. Then, show that f is bijective. Find $f^{-1}(x)$.

D Watch Video Solution

Topic 01 Practice Question Exam Textbook S Other Imp Questions 6 Marks Questions

1. Prove that $f: X \rightarrow Y$ is injective iff for all subsets A, B of $X, f(A \cap B)=f(A) \cap f(B)$.

D Watch Video Solution

2. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Prove that gof is bijective if both f and g are bijective.

Also prove that $(g \circ f)^{-1}=f^{-1} o g^{-1}$.

D Watch Video Solution

3. If N denotes the set of all natural numbers and R be the relation on $N \times N$ defined by (a,
b) R (c, d) if $a d(b+c)=b c(a+d)$. Show that R is an equivalence relation.

D Watch Video Solution

4. Consider $f: R-\left\{-\frac{4}{3}\right\} \rightarrow R-\left\{\frac{4}{3}\right\}$
given by $f(x)=\frac{4 x+3}{3 x+4}$. Show that f is bijective. Find the inverse of f and hence find $f^{-1}(0)$ and x such that $f^{-1}(x)=2$.

Watch Video Solution

5. Consider $f: R_{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible
with $f^{-1}(y)=\left(\frac{\sqrt{y+6}-1}{3}\right)$. Hence. Find

$$
\text { (i) } f^{-1}(10) \quad \text { (ii) } y \text { if } f^{-1}(y)=\frac{4}{3}
$$

where R_{+}is the set of all non-negative real numbers.

D Watch Video Solution

Topic 01 Topic Test 1

1. For real numbers x and y, define $x R y$ if and only if $x-y+\sqrt{2}$ is an irrational number. Is R transitive? Explain your answer.

D Watch Video Solution

2. If the relation R is defined on the set $A=$
$\{1,2,3,4,5\}$ by $\mathrm{R}=\{\mathrm{a}, \mathrm{b}\}:\left|a^{2}-b^{2}\right|<8$. Then, find the relation R .

3. Find least positive integer x, satisfying

 $276 x+128=4(\bmod 7)$.
- Watch Video Solution

4. If the mappings f and g are given by
$f=\{(1,2),(3,5),(4,1)$ and $g=\{(2,3),(5,1),(1,3)\}$, then
write fog.

D Watch Video Solution

5. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5)$,
$(3,6)$ \} be a function from A to B. State whether f is one-one or not.

D Watch Video Solution

6. Let X and Y be set containing m and n elements, respectively. How many functions
from X to Y are one-one according to $m<n$.
7. Show that the function $f(x)=a^{x}, x \in R$ is injective, where $(a>0$ and $a \neq 1)$.

- Watch Video Solution

8. Show that the relation S in set
$A=\{x \in Z: 0 \leq x \leq 12\} \quad$ given by
$S=\{(a, b): a, b \in A,|a-b|$ is divisible by 4$\}$
is an equivalence relation. Find the set of all elements related to 1.
9. Show that the relation S defined on set
$N \times N$ by $(a, b) S(c, d) \Rightarrow a+d=b+c$ is
an equivalence relation.

D Watch Video Solution

10. Show that $f: N \rightarrow N$, given by
$f(x)=\left\{\begin{array}{l}x+1, \text { if } \mathrm{x} \text { is odd } \\ x-1, \text { if } \mathrm{x} \text { is even }\end{array}\right.$
is bijective (both one-one and onto).
11. If $f: R \rightarrow R$ is defined as $f(x)=10 x+7$.

Find the function $g: R \rightarrow R$, such that $g o f=f o g=I_{R}$.

- Watch Video Solution

12. If the function'f : $R \rightarrow R$ is given by $f(x)=$ $x^{2}+2$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ is given by $\mathrm{g}(\mathrm{x})=$ $\frac{x}{x-1}, x \neq 1$ then find fog and goo and hence find fog (2) and got (-3).
13. Show that the relation R is in the set
$A=\{1,2,3,4,5\}$ given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}):|\mathrm{a}-\mathrm{b}|$ is
divisible by 2$\}$, is an equivalence relation. Write all the equivalence classes of R.

D Watch Video Solution

14. Let $f: N \rightarrow R$ be a function defined as
$f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$
, where S is the range of f, is invertible. Also,
find the inverse of f.
15. Prove that $\mathrm{f}: X \rightarrow Y$ is surjective iff for all
$A \subseteq X,(f(A))^{\prime} \subseteq f\left(A^{\prime}\right)$, where A^{\prime} denotes the complement of A in X.

D Watch Video Solution

Topic 02 Practice Question Exam Textbook S Other Imp Questions 1 Mark Questions

1. Let * is a binary operation on N given by
$a * b=L C M(\mathrm{a}, \mathrm{b})$ for all $a, b \in N$. Find $5 * 7$

D Watch Video Solution

2. Let * is a binary operation on set of integers

I defined by $a * b=3 a+4 b-2$, then find the
value of $4 * 5$.

D Watch Video Solution
3. Let * is the binary operation on N given by $a * b=H C F(\mathrm{a}, \mathrm{b})$, where $a, b \in N$. Write the value of $22 * 4$.

- Watch Video Solution

4. If * is binary operation on set Q of rational numbers defined as $a * b=\frac{a b}{5}$. Write the identity for *, if any.
5. Find the number of binary operations on the set $\{a, b\}$.

D Watch Video Solution

6. Is the binary operation * defined on Z (set of
integers) by
$m * n=m-n+m n, \forall m, n \in Z$
commutative?

D Watch Video Solution
7. Is * defined on the set $S=\{0,1,2,3 . . .10\}$ by $a * b=\operatorname{LCM}(\mathrm{a}, \mathrm{b})$ for all $a, b \in S$.

- Watch Video Solution

8. Let * be a binary operation on N given by
$a * b=G C D(\mathrm{a}, \mathrm{b})$ for $a, b \in N$. Check the commutativity and associativity of * on N.

D Watch Video Solution
9. Let * be a binary operation on the set S of all non-negative real numbers defined by
$a * b=\sqrt{a^{2}+b^{2}}$. Find the identity elements in S with respect to *.

(D) Watch Video Solution

Topic 02 Practice Question Exam Textbook S Other Imp Questions 4 Marks Questions

1. Construct the multiplication table \times_{7} on
the set $\{1,2,3,4,5,6\}$. Also find the inverse
element of 4 if it exists.

D Watch Video Solution

2. Let * be a binary operation on N given by
$a * b=\operatorname{LCM}(a, b)$ for all $a, b \in N$.
(i) Is * commutative.
(ii) Is * associative.

D Watch Video Solution
3. If S is the set of all rational numbers except

1 and * be defined on S by $a * b=a+b-a b$,
for all $a, b \in S$.
Prove that
(i) * is a binary operation on S .
(ii) * is commutative as well as associative.

- Watch Video Solution

4. Consider the binary operation * on the set
$\{1,2,3,4,5\}$ defined by $a * b=\min \{a, b\}$. Write
operation table of operation *.

D Watch Video Solution

5. Consider the binary operation

* : $R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined
as $\quad a * b=|a-b|$ and $a o b=a . \quad$ For \quad all
$a, b \in R$. Show that * is commutative but not associative, .o. is associative but not commutative.

Topic 02 Practice Question Exam Textbook \mathbf{S}

 Other Imp Questions 6 Marks Questions1.

Constract
the
composition
table/multiplication table for the binary
operation * defined on $\{0,1,2,3,4\}$ by
$a * b=a \times b(\bmod =5)$. Find the identity element if any. Also find the inverse elements of 2 and 4.
(Watch Video Solution
2. A binary operation * is defined on the set
$X=R-\{-1\}$
$x * y=x+y+x y, \forall x, y \in X$.

Check whether * is commutative and associative. Find its identity element and also find the inverse of each element of X.

D Watch Video Solution

Topic 02 Topic Test 2

$a * b=a+b(\bmod 7) \operatorname{on}\{0,1,2,3,4,5,6\}$
operations as defined by * are binary operations on the sets specified in each case.

Give reasons if it is not a binary operation.

D Watch Video Solution

2.

defined by * are binary operations on the sets
specified in each case. Give reasons if it is not
a binary operation.

D Watch Video Solution

3. Let * is a binary operation on the set of all non-zero real numbers, given by $a * b=\frac{a b}{5}$ for all $c, b \in R-(0)$. Find the value of x , given that $2 *(x * 5)=10$.

D Watch Video Solution

4. For binary operation * defined on $8-\{1\}$, such
that $\quad a * b=a+b-a b$. Determine the identity element.

D Watch Video Solution

5. Let $A=N \cup\{0\} \times N \cup\{0\}$ and Let * be a
binary operation on a defined by
$(a, b) *(c, d)=(a+c, b+d)$ for (a, b), (c, d)
\in N. Show that.
(i) B commutative as A
(ii) * is associative on A

- Watch Video Solution

6. Let * be a binary operation on Q defined by
$a * b=a b+1$. Determine whether * is
commutative but not associative.

D Watch Video Solution

7. Construct the composition

 table/multiplication table for the binary operation * defined on $\{0,1,2,3,4,5\}$ given by $a * b=a b(\bmod 6)$. Find the identity element if any. Also, find the inverse of elements 1 and 5.
D Watch Video Solution

8. Given a non-empty set X , Let *: $P(x) \times P(x)$
be defined
$A * B=(A-B) \cup(B-A), \forall A, B \in P(x)$
. Show that the empty set ϕ is the identity for the operation * and all the elements A of $p(x)$ are invertible with $A^{-1}=A$.

D Watch Video Solution

Chapter Test 1 Mark Questions

1. Let $A=\{1,2,3,4, \ldots . ., 15,16\}$ and let R be a relation
in A given by $\left.R=\{(a, b)\}: b=a^{2}\right\}$, then find domain and range of relation R.

- Watch Video Solution

2. Let $f: N \rightarrow N$ be defined by $f(x)=x+2$.

Then, find whether f is injective.

- Watch Video Solution

3. If $f(x)=27 x^{3}$ and $g(x)=x^{1 / 3}$. Then, find $\operatorname{gof}(x)$.

- Watch Video Solution

4. If the mappings f and g are given by
$f=\{(1,2),(3,5),(4,1)$ and $g=\{(2,3),(5,1),(1,3)\}$, then write fog.

- Watch Video Solution

5. If $A=\{a, b, c, d\}$ and the function $f=\{(a, b),(b, d)$,
$(\mathrm{c}, \mathrm{a}),(\mathrm{d}, \mathrm{c})$, then write f^{-1}.

- Watch Video Solution

6. If $f: R \rightarrow R$ defined by $f(x)=\frac{3 x+5}{2}$ is an invertible function, then find $f^{-1}(x)$.

D Watch Video Solution

7. If * defined on the set $A=\{1,2,3,4,5\}$ by
$a * b=L C M$ of a and b a binary operation ?

Justify your answer.

D Watch Video Solution
8. Let * be the binary operation defined on set
8 of rational numbers as
$a * b=a^{2}+b^{2}, \forall a, b \in \theta$, then find $\sqrt{8 * 6}$.

D Watch Video Solution

9. Let * be a binary operation on set of integer.

I defined by $a * b=2 a+b-3$. Find the value of $3 * 4$.
10. Let $*$ is binary operation on set Q of
rational number defined as $a * b=\frac{a b}{2}$. Write the identity for *, if any.

D Watch Video Solution

Chapter Test 4 Marks Questions

1. Show that the relation S in set
$A=\{x \in Z: 0 \leq x \leq 12\} \quad$ given by
$S=\{(a, b): a, b \in A,|a-b|$ is divisible by 4$\}$
is an equivalence relation. Find the set of all elements related to 1.

D Watch Video Solution

2. Show that the relation S defined on set
$N \times N$ by $(a, b) S(c, d) \Rightarrow a+d=b+c$ is
an equivalence relation.

D Watch Video Solution
3. Show that the relation R on the set A of real numbers defined as $R=\{(a, b): a \leq b)$ is reflexive. and transitive but not symmetric.

D Watch Video Solution

4. Show that $f: N \rightarrow N$, given by
$f(x)=\left\{\begin{array}{l}x+1, \text { if } \mathrm{x} \text { is odd } \\ x-1, \text { if } \mathrm{x} \text { is even }\end{array}\right.$
is bijective (both one-one and onto).

D Watch Video Solution

5. If the function $f: R \rightarrow R$ is given by
$f(x)=x^{2}+2$ and $g: R \rightarrow R$ is given by $g(x)=\frac{x}{x-1}, x \neq 1$, then find fog and gof, and hence find fog(2) and gof(-3).

D Watch Video Solution

6. If $f: R \rightarrow R$ is the function defined by
$f(x)=4 x^{3}+7$, then show that f is a bijection.
7. If $A=N \times N$ and *is a binary operation on

A defined by $(a, b) *(c, d)=(a+c, b+d)$.
Show that * is commutative and associative.
Also, find identity element for * on A, if any.

- Watch Video Solution

Chapter Test 6 Marks Questions

1. Show that the relation R is in the set
$A=\{1,2,3,4,5\}$ given by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}):|\mathrm{a}-\mathrm{b}|$ is
divisible by 2$\}$, is an equivalence relation. Write all the equivalence classes of R.

D Watch Video Solution

2. Let $f: N \rightarrow R$ be a function defined as
$f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$
, where S is the range of f, is invertible. Also,
find the inverse of f.

D Watch Video Solution

3. Discuss the commutativity and associativity
of binary operation .* defined on $A=Q-\{1\}$ by
the rule $a * b=a-b+a b$ for all $a, b \in A$.
Also, find the identity element of * in A and hence find the invertible elements of A .

- Watch Video Solution

