

MATHS

BOOKS - ARIHANT PRAKASHAN

RELATIONS AND FUNCTIONS

Topic 01 Practice Question Exam Textbook S Other Imp Questions 1 Mark Questions

1. A R is a relation on set A such that $R = R^{-1}$, then write the type of the relation

2. Sets A and B have respectively m and n elements. The total number of relations from set A to set B is 64. If m < n and $m \neq 1$, write the values of m and n, respectively.

3. If $R = ig\{ (a, a^3) : a ext{ is prime number less} ig\}$

than 5} be a relation. Find the range of R.

Watch Video Solution

4. If $R = \{(x,y) : x+2y=8\}$ is a relation on

N, then write the range of R.

5. State the reason for the relation R in the set $\{1, 2, 3\}$ given by R = $\{(1, 2), (2, 1)\}$ not to be transitive.

6. Let R is the equivalence in the set A = {0, 1, 2,

3, 4, 5} given by R = {(a, b) : 2 divides (a - b)}.

Write the equivalence class [0].

7. Find the least positive integer .r. such that $185 \in [r]_7.$

Watch Video Solution

8. If X and Y are sets containing m and n elements respectively then what is the total number of function from X to Y ?

9. Show that the function $f\colon R o R$ defined by $f(x)=rac{x}{x^2+1}$ is neither one-one nor onto.

10. If A = {1, 2, 3}, B = {4, 5, 6, 7} and f = {(1, 4), (2,

5), (3, 6)} is a function from A to B. State

whether f is one-one or not.

11. What is the range of the function

$$f(x)=rac{|x-1|}{x-1}, x
eq 1?$$

Watch Video Solution

12. Write fog, if $f \colon R o R$ and $g \colon R o R$ are

given by $f(x) = 8x^3$ and $g(x) = x^{1/3}$.

13. If $f \colon R o R$ and $g \colon R o R$ are given by $f(x) = \sin x$ and $g(x) = x^5$, then find gof(x).

Watch Video Solution

15. Show that $f(x)=\sin x$ on [0, pi/2] functions

are injective.

16. Let f = {(1,3), (2,4), (3,7)} and g = {(3,2), (4,3),

(7,1)} determine gof?

Watch Video Solution

Topic 01 Practice Question Exam Textbook S Other Imp Questions 4 Marks Questions **1.** Let R be the relation on the set R of real numbers such that aRb iff a-b is and integer. Test whether R is an equivalence relation. If so find the equivalence class of $1 \text{ and } \frac{1}{2}$ wrt. This equivalence relation.

O Watch Video Solution

2. Show that the relation R on the set A of real numbers defined as R = {(a,b): a $\leq b$).is reflexive. and transitive but not symmetric.

3. If Z is the set of all integers and R is the relation on Z defined as $R = \{(a, b) : a, b \in Z \text{ and } a - b \text{ is divisible}$ by 3. Prove that R is an equivalence relation.

Watch Video Solution

4. If $f: X \to Y$ is a function. Define a relation R on X given by R={(a, b): f(a)=f(b)}. Show that R is an equivalence relation on X.

6. If A = {1,2,3,...,9} and R is the relation in A \times

A defined by (a, b) R (c, d), if a + d = b + c for

(a, b), (c, d) in A imes A. Prove that R is an

equivalence relation.

7. Check whether the relation R defined on the

set A = {1,2,3,4,5,6} as R = {(a,b) : b = a + 1} is

reflexive, symmetric or transitive.

8. Let R be the set of all non -zero real numbers. Then show that f: $R \rightarrow R$ given by $f(x) = \frac{1}{x}$ is one- one and onto.

9. Show that a function $f \colon R o R$ given by

f(x) = 3x + 5 is a bijective.

10. If $f\!:\!N o N$ is defined by.

$$f(n) = \left\{ egin{array}{c} rac{n+1}{2}, ext{if n is odd} \ rac{n}{2}, ext{if n is even} \end{array}
ight.$$
 for all $n \in N.$

Find whether the function f is bijective.

11. If the function
$$f:R o R$$
 is given by $f(x) = rac{x+3}{3}$ and $g:R o R$ is given $g(x) = 2x - 3$, then find
(i) fog (ii) gof.
Is $f^{-1} = g$?

Watch Video Solution

12. If A = R -{3} and B = R -{1}. Consider the function $f: A \to B$ defined by $f(x) = \frac{x-2}{x-3}$, for all $x \in A$. Then, show that f is bijective. Find $f^{-1}(x)$.

Watch Video Solution

Topic 01 Practice Question Exam Textbook S Other Imp Questions 6 Marks Questions 1. Prove that $f\colon X o Y$ is injective iff for all subsets A, B of $X,\,f(A\cap B)=f(A)\cap f(B).$

Watch Video Solution

2. Let $f: X \to Y$ and $g: Y \to Z$. Prove that gof is bijective if both f and g are bijective. Also prove that $(gof)^{-1} = f^{-1}og^{-1}$.

3. If N denotes the set of all natural numbers and R be the relation on N imes N defined by (a, b) R (c, d) if ad(b+c) = bc(a+d). Show that

R is an equivalence relation.

4. Consider
$$f: R - \left\{-\frac{4}{3}\right\} \to R - \left\{\frac{4}{3}\right\}$$

given by $f(x) = \frac{4x+3}{3x+4}$. Show that f is

bijective. Find the inverse of f and hence find $f^{-1}(0)$ and x such that $f^{-1}(x) = 2$.

5. Consider $f: R_+ \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right)$. Hence. Find $(i)f^{-1}(10)$ (ii)y if $f^{-1}(y) = \frac{4}{3}$ where R_+ is the set of all non-negative real numbers.

1. For real numbers x and y, define x R y if and only if $x - y + \sqrt{2}$ is an irrational number. Is R transitive? Explain your answer.

2. If the relation R is defined on the set A= {1,2,3,4,5} by R={a,b} : $\left|a^2 - b^2\right| < 8$. Then, find

the relation R.

3. Find least positive integer x, satisfying

 $276x + 128 = 4 \pmod{7}$.

4. If the mappings f and g are given by
f={(1,2),(3,5),(4,1) and g={(2,3),(5,1),(1,3)}, then write fog.

5. Let A={1,2,3}, B={4,5,6,7} and let f={(1,4),(2,5),
(3,6)} be a function from A to B. State whether
f is one-one or not.

6. Let X and Y be set containing m and n elements, respectively. How many functions

from X to Y are one-one according to m < n.

7. Show that the function $f(x)=a^x, x\in R$ is

injective, where $(a > 0 \text{ and } a \neq 1)$.

9. Show that the relation S defined on set $N \times N$ by $(a, b)S(c, d) \Rightarrow a + d = b + c$ is an equivalence relation.

Watch Video Solution

10. Show that
$$f\colon N o N$$
, given by

$$f(x) = igg\{ egin{array}{c} x+1, ext{if x is odd} \ x-1, ext{if x is even} \end{array}$$

is bijective (both one-one and onto).

11. If $f\colon R o R$ is defined as f(x)=10x+7.Find the function $g\colon R o R$, such that $gof=fog=I_R.$

Watch Video Solution

12. If the function'f : $\mathbb{R} \to \mathbb{R}$ is given by $f(x) = x^2 + 2$ and g: $\mathbb{R} \to \mathbb{R}$ is given by $g(x) = \frac{x}{x-1}, x \neq 1$ then find fog and gof and hence find fog (2) and gof (-3).

13. Show that the relation R is in the set $A = \{1, 2, 3, 4, 5\}$ given by R={(a, b): |a-b| is divisible by 2}, is an equivalence relation. Write all the equivalence classes of R.

14. Let f:N o R be a function defined as $f(x)=4x^2+12x+15$. Show that f:N o S, where S is the range of f, is invertible. Also, find the inverse of f.

15. Prove that f:X o Y is surjective iff for all

 $A\subseteq X,$ $(f(A))'\subseteq f(A')$, where A' denotes

the complement of A in X.

Watch Video Solution

Topic 02 Practice Question Exam Textbook S Other Imp Questions 1 Mark Questions **1.** Let * is a binary operation on N given by a * b = LCM (a, b) for all $a, b \in N$. Find 5 * 7

2. Let * is a binary operation on set of integers

I defined by a * b = 3a + 4b - 2, then find the

value of 4 * 5.

3. Let * is the binary operation on N given by a * b = HCF (a, b), where $a, b \in N$. Write the value of 22 * 4.

4. If * is binary operation on set Q of rational numbers defined as $a * b = \frac{ab}{5}$. Write the identity for * if any

identity for *, if any.

Watch Video Solution

5. Find the number of binary operations on

the set {a, b}.

6. Is the binary operation * defined on Z (set of

integers) by

 $m*n=m-n+mn, \ orall m,n\in Z$

commutative?

7. Is * defined on the set S={0,1,2,3...,10} by

a * b = LCM(a, b) for all $a, b \in S$.

Watch Video Solution

8. Let * be a binary operation on N given by a * b = GCD (a, b) for $a, b \in N$. Check the

commutativity and associativity of * on N.

9. Let * be a binary operation on the set S of all non-negative real numbers defined by $a * b = \sqrt{a^2 + b^2}$. Find the identity elements in S with respect to *.

Watch Video Solution

Topic 02 Practice Question Exam Textbook S Other Imp Questions 4 Marks Questions

1. Construct the multiplication table \times_7 on the set {1,2,3,4,5,6}. Also find the inverse

element of 4 if it exists.

- 2. Let * be a binary operation on N given by
- a * b = LCM(a, b) for all $a, b \in N$.
- (i) Is * commutative.
- (ii) Is * associative.

3. If S is the set of all rational numbers except 1 and * be defined on S by a * b = a + b - ab, for all $a, b \in S$.

Prove that

(i) * is a binary operation on S.

(ii) * is commutative as well as associative.

4. Consider the binary operation * on the set {1,2,3,4,5} defined by $a * b = \min\{a,b\}$. Write

operation table of operation *.

Watch Video Solution

5. Consider the binary operation $*: R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined as a * b = |a - b| and aob = a. For all $a, b \in R$. Show that * is commutative but not associative, .o. is associative but not commutative.

1. Constract the composition table/multiplication table for the binary operation * defined on {0,1,2,3,4}by $a * b = a \times b \pmod{= 5}$. Find the identity element if any. Also find the inverse elements of 2 and 4.

2. A binary operation * is defined on the set

 $X = R - \{-1\}$ by $x * y = x + y + xy, \forall x, y \in X.$ Check whether * is commutative and associative. Find its identity element and also find the inverse of each element of X. Watch Video Solution

Topic 02 Topic Test 2

Watch Video Solution

defined by * are binary operations on the sets

specified in each case. Give reasons if it is not

a binary operation.

3. Let * is a binary operation on the set of all non-zero real numbers, given by $a * b = \frac{ab}{5}$ for all $c, b \in R - (0)$. Find the value of x, given that 2 * (x * 5) = 10.

4. For binary operation * defined on 8 -{1}, such

that a * b = a + b - ab. Determine the

identity element.

5. Let $A = N \cup \{0\} \times N \cup \{0\}$ and Let * be a binary operation on a defined by (a, b) * (c, d) = (a + c, b + d) for (a, b), (c, d) \in N. Show that.

(ii) * is associative on A

6. Let * be a binary operation on Q defined by

a * b = ab + 1. Determine whether * is

commutative but not associative.

7. Construct the composition table/multiplication table for the binary operation * defined on {0, 1, 2, 3, 4, 5} given by a * b = ab (mod 6). Find the identity element if any. Also, find the inverse of elements 1 and 5.

Watch Video Solution

8. Given a non-empty set X, Let *: P(x) imes P(x)

be

defined

 $A*B=(A-B)\cup(B-A),\,orall A,B\in P(x)$

. Show that the empty set ϕ is the identity for the operation * and all the elements A of p(x) are invertible with $A^{-1} = A$.

Watch Video Solution

Chapter Test 1 Mark Questions

1. Let A = {1,2,3,4,...., 15,16} and let R be a relation

in A given by $R = \{(a,b)\} \colon b = a^2\}$, then find

domain and range of relation R.

2. Let $f\colon N o N$ be defined by f(x)=x+2.

Then, find whether f is injective.

3. If
$$f(x) = 27x^3$$
 and $g(x) = x^{1/3}$. Then, find gof(x).

4. If the mappings f and g are given by
f={(1,2),(3,5),(4,1) and g={(2,3),(5,1),(1,3)}, then write fog.

5. If A = {a,b,c,d} and the function f = {(a,b),(b,d),

(c,a),(d,c)}, then write f^{-1} .

6. If $f\!:\!R o R$ defined by $f(x)=rac{3x+5}{2}$ is

an invertible function, then find $f^{-1}(x)$.

Watch Video Solution

7. If * defined on the set A ={1,2,3,4,5} by

a * b = LCM of a and b a binary operation ?

Justify your answer.

9. Let * be a binary operation on set of integer. I defined by a * b = 2a + b - 3. Find the value

of 3 * 4.

10. Let * is binary operation on set Q of rational number defined as $a * b = \frac{ab}{2}$. Write the identity for *, if any.

Watch Video Solution

Chapter Test 4 Marks Questions

1. Show that the relation S in set
$$A=\{x\in Z\colon 0\leq x\leq 12\}$$
 given by $S=\{(a,b)\colon a,b\in A, |a-b| ext{ is divisible by 4}\}$

is an equivalence relation. Find the set of all

elements related to 1.

an equivalence relation.

3. Show that the relation R on the set A of real

numbers defined as R = {(a,b): a $\leq b$).is

reflexive. and transitive but not symmetric.

4. Show that
$$f\colon N o N$$
, given by

$$f(x) = igg\{ egin{array}{l} x+1, ext{if x is odd} \ x-1, ext{if x is even} \end{array}$$

is bijective (both one-one and onto).

5. If the function $f:R \to R$ is given by $f(x) = x^2 + 2$ and $g:R \to R$ is given by $g(x) = \frac{x}{x-1}, x \neq 1$, then find fog and gof, and hence find fog(2) and gof(-3).

Watch Video Solution

6. If f: R o R is the function defined by $f(x) = 4x^3 + 7$, then show that f is a bijection.

7. If $A = N \times N$ and * is a binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Show that * is commutative and associative. Also, find identity element for * on A, if any.

Watch Video Solution

Chapter Test 6 Marks Questions

1. Show that the relation R is in the set $A=\{1,2,3,4,5\}$ given by R={(a, b): |a-b| is

divisible by 2}, is an equivalence relation. Write

all the equivalence classes of R.

2. Let $f \colon N o R$ be a function defined as

 $f(x) = 4x^2 + 12x + 15$. Show that $f \colon N o S$

, where S is the range of f, is invertible. Also, find the inverse of f.

3. Discuss the commutativity and associativity of binary operation .*. defined on A = Q - {1} by the rule a * b = a - b + ab for all $a, b \in A$. Also, find the identity element of * in A and hence find the invertible elements of A.

