©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT PRAKASHAN

SIMILAR TEST 3

Section A

1. If $y=x^{-1} \sin \left(\operatorname{cosec}^{-1} \frac{1}{x}\right)$, then find $\frac{d y}{d x}$

- Watch Video Solution

2. Is $f(x)=x^{3}$ continuous at $\mathrm{x}=2$?

- Watch Video Solution

3. Integrate $\int 2^{x} \cdot 4^{-x / 2} d x$.

(Watch Video Solution

4. Write the order and degree of the differential equation $\sin \left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d y}{d x}$

- Watch Video Solution

5. Write the dR.s of line joining the points $(4,-6,1)$ and $(0,3,-1)$

- Watch Video Solution

6. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to
B. State whether f is one-one or not.

- Watch Video Solution

7. State the extreme point theorem.

- Watch Video Solution

8. If A is a 2×2 non - singular matrix and $|A|=\frac{1}{4}$ then what is $|\operatorname{adj} \mathrm{A}|$

- Watch Video Solution

9. Let A and B be the events such that $P(A)=\frac{1}{3}, P(B)=\frac{1}{4}$ and $P(A \cap B)=\frac{1}{5}$. Find $P\left(\frac{B}{A}\right)$

- Watch Video Solution

10. Find the scalar triple product of \vec{a}, \vec{b} and \vec{c}.
$\vec{a}=5 \hat{i}-\hat{j}+4 \hat{k}, \vec{b}=2 \hat{i}+3 \hat{j}+5 \hat{k}$ and $\vec{c}=5 \hat{i}-2 \hat{j}+6 \hat{k}$

- Watch Video Solution

1. Check if the relation R on set of real numbers, defined as $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexsive, symmetric or transitive.

(Watch Video Solution

2. Let $f: W \rightarrow W$ be defined as $f(x)=x-1$ if x is odd and $f(x)=x+1$ if x is even then show that f is invertible. Find the inverse of f where W is the set of all whole numbers.

- Watch Video Solution

3. Solve for $\mathrm{x}, \tan ^{-1} x+2 \cot ^{-1} x=\frac{2 \pi}{3}$

- Watch Video Solution

4. Prove that following
$\cot ^{-1}\left(\frac{x y+1}{x-y}\right)+\cot ^{-1}\left(\frac{y z+1}{y-z}\right)+\cot ^{-1}\left(\frac{z x+1}{z-x}\right)=0,(0<x y, y z$,

- Watch Video Solution

5. Solve the following LPP graphically Minimise $Z=5 x+10 y$ Subject to the constraints,
$x+2 y \leq 120$
$x+y \geq 60$
$x-2 y \geq 0$ and $x, y \geq 0$

- View Text Solution

6. Prove that the following. $\left[\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right]$
$=a b c(1+1 / a+/ b+1 / c)$
7. Show that the following system is inconsistent.
$(a-b) x+(b-c) y+(c-a) z=0$
$(b-c) x+(c-a) y+(a-b) z=0$
$(c-a) x+(a-b) y+(b-c) z=1$

- Watch Video Solution

8. If $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -2\end{array}\right]$, then find k such that $A^{2}=k A-2 I$.

- Watch Video Solution

9. On a multiple choice examination with three possible options for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing?

- Watch Video Solution

10. An instructor has a question bank consisting of 300 easy true/false questions, 200 difficult true/false questions, 500 easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank, then what is the probability that it will be an easy question, given that it is a multiple choice questions?

- Watch Video Solution

11. If $y=\log \left(x+\sqrt{1+x^{2}}\right)$, then find $y_{2}(0)$.

- View Text Solution

12. Differentiate the following function w.r.t. x, $(\log x)^{x}+x^{\log x}$.

- Watch Video Solution

13. Find the equation of normal to the curve
$y=e^{\sin x} \quad$ at $\quad x=\frac{\pi}{3}$

- Watch Video Solution

14. Find the approximate value of $f(2.01)$, where $f(x)=4 x^{2}+5 x+2$

- Watch Video Solution

15. Discuss the continuity of the function $f(x)$ at $x=1 / 2$, when $f(x)$ is defined as follows.
$f(x)= \begin{cases}1 / 2+x & \text { if } 0 \leq x<1 / 2 \\ 1 & \text { if } x=1 / 2 \\ 3 / 2+x & \text { if } 1 / 2<x \leq 1\end{cases}$

D View Text Solution

16. Integrate $\int \cot ^{-1} x d x$.
17. Integrate $\int \sqrt{7 x-10-x^{2}} d x$

Watch Video Solution

18. Evaluate $\int_{0}^{\pi}|\cos x| d x$.

- Watch Video Solution

19. Find the area bounded by $y=|x-1|$ and $y=1$.

- Watch Video Solution

20. Solve $\frac{d y}{d x}+(\sec x) y=\tan x$.

- Watch Video Solution

21. Find the area of the parallelogram whose diagonals are the vectors $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$?

Watch Video Solution

22. Find the angle between the lines whose direction cosines are given by the equations. $3 l+m+5 n=0,6 m n-2 n l+5 l m=0$.

- Watch Video Solution

23. Prove that the point $(1,2,3),(-1,1,0),(2,1,3)$ and $(1,1,2)$ are coplanar.

- Watch Video Solution

24. Find the points of intersection of the line $\frac{x-1}{1}=\frac{y+2}{3}=\frac{z-1}{-1}$ and the plane $2 x+y+z=9$.

Section C

1. Verify Lagaranges mean value theorem for the functions
$f(x)=\left\{\begin{array}{ll}2+x^{3} & \text { if } x \leq 1 \\ 3 x & \text { if } x>1\end{array}\right.$ on $[-1,2]$

- Watch Video Solution

2. Evaluate the following . $\int_{1}^{2} e^{x}(x+1) d x$

- Watch Video Solution

3. Find the solutions of the following differential equations:
$x \sin \frac{y}{x} d y=\left(y \sin \frac{y}{x}-x\right) d x$

- Watch Video Solution

4. Sketch the graph of the curve $y^{2}=x$ and $y^{2}=4-3 x$ and find the area enclosed between them .

- View Text Solution

5. Prove the following by vector method. An angle inscribed in a semicircle is a right angle.

- Watch Video Solution

6. Find the equation of the plane Passing through the intersection of the planes $x+3 y-z+1=0$ and $3 x-y+5 z+3=0$ and is at a distance $2 / 3$ units from origin.

- Watch Video Solution

7. Show that $f: N \rightarrow N$, given by
$f(x)=\left\{\begin{array}{l}x+1, \text { if } \mathrm{x} \text { is odd } \\ x-1, \text { if } \mathrm{x} \text { is even }\end{array}\right.$
is bijective (both one-one and onto).

- Watch Video Solution

8. If $\sin \left[\cot ^{-1}(x+1)\right]=\cos \left(\tan ^{-1} x\right)$, then find x

- View Text Solution

9. Solve the following LPP graphically .

Maximise : $Z=100 x+300 y$
Subject to : $x+y \leq 24$,
and $x \geq 0, y \geq 0$

- Watch Video Solution

10.

$(A B)^{-1}$ if $A=\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$ and $B^{-1}=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & 3 & -1 \\ 1 & 0 & 2\end{array}\right]$

D View Text Solution

11. If $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, then find the real values of x and y such that $(x I+y A)^{2}=A$

- Watch Video Solution

12. A shopkeeper sells three types of flower seeds A_{1}, A_{2} and A_{3}. They are sold as a mixture, where the proportions are 4:4:2, respectively . The germination rates of the three types of seeds are $45 \%, 60 \%$ and 35 \%. Calculate the probability of a randomly chosen seed to germinate
13. A shopkeeper sells three types of flower seeds A_{1}, A_{2} and A_{3}. They are sold as a mixture, where the proportions are 4:4:2, respectively . The germination rates of the three types of seeds are $45 \%, 60 \%$ and 35 \%. Calculate the probability that it will not germinate given that -the seed is of type A_{3}

- Watch Video Solution

14. A shopkeeper sells three types of flower seeds A_{1}, A_{2} and A_{3}. They are sold as a mixture, where the proportions are 4:4:2, respectively . The germination rates of the three types of seeds are $45 \%, 60 \%$ and 35 \%. Calculate the probability that it is of the type A_{2} given that a randomly chosen seed does not germinate.

- Watch Video Solution

