©゙" doubtnut

MATHS

BOOKS - ARIHANT PRAKASHAN

THREE DIMENSIONAL GEOMETRY

Topic 1 Practice Questions

1. Write the direction cosines of Z-axis.

D Watch Video Solution
2. If the distance between the points $(-1,-1, z)$ and $(1,-1,1)$ is 2 then $\mathrm{z}=$ \qquad .

- Watch Video Solution

3. A line makes angles 60° and 45° with the positive direction of X -axis and Y -axis, respectively. What acute angle does it make with the Z-axis?

- Watch Video Solution

4. Fill in the blanks in the length of the projection of the line segment joining $(1,3,-1)$ and ($3,2,4$) on z-axis is \qquad .
$[1,3,4,5]$

(Watch Video Solution

5. If a line is perpendicular to z-axis and makes an angle measuring 60° with x-axis, then the angle it makes with y-axis measures \qquad .

(D) Watch Video Solution

6. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines show that the Direction Cosines of the line perpendicular to both of them are $m_{1} n_{2}-n_{1} m_{2}, n_{1} l_{2}-l_{1} n_{2}, l_{1} m_{2}-m_{1} l_{2}$
7. Prove that the measure of the angle between two main diagonals of a cube is $\cos ^{-1} \frac{1}{3}$.

- Watch Video Solution

8. Find the acute angle between the lines passing through

$$
(-3,-1,0),(2,-3,1) \quad \text { and }
$$

$(1,2,3),(-1,4,-2)$ respectively.

- Watch Video Solution

9. Find the angle between the lines whose direction cosines are given by the equations.
$3 l+m+5 n=0,6 m n-2 n l+5 l m=0$.

- Watch Video Solution

10. Find the direction ratios and direction cosines of the
line passing through two points $(2,-4,5)$ and $(0,1,-1)$.

- Watch Video Solution

11. Prove that the two lines whose direction cosines are connected by the equations
$l+2 m+3 n=0,3 l m-4 \ln +m n=0$ are
perpendicular to each other.
12. Write the ratio in which the line joining the points $(2,3,4)$ and $(-3,5,-4)$ is divided by yz-plane.

- Watch Video Solution

2. If a line makes angle $\frac{\pi}{3}$ and $\frac{\pi}{4}$ with X -axis Y - axis respectively, then find the angle made by the line with Zaxis.
3. Show that the point $(3,-2,4),(1,1,1)$ and $(-1,4,-2)$ are collinear.

(D) Watch Video Solution

4. If $\mathrm{P}(1, y, z)$ lies on the line through $(3,2,-1)$ and
$(-4,6,3)$ find $y \& z$.

- Watch Video Solution

5. If a line in the space makes angles α, β and γ with the coordinate axes, then find the value of $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.

6. If A, B, C, D are the points $(6,3,2),(3,5,7),(2,3,-1) \quad$ and $\quad(3,5,-3)$ respectively, then find the projection of $\overline{A B}$ on $\overleftrightarrow{C D}$

D Watch Video Solution

7. Prove the angle between the diagonal of one of the faces of the cube and the diagonal of the cube intersecting the diagonal of the face of the cube is
$\cos ^{-1} \sqrt{\frac{2}{3}}$

D Watch Video Solution

8. A line makes angles $\alpha, \beta, \gamma, \delta$ with the four main diagonals of a cube. Prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

- Watch Video Solution

Topic 2 Practice Questions

1. Write the distance between parallel planes
$2 x-y+3 z=4$ and $2 x-y+3 z=18$.

D Watch Video Solution
2. Write the equation of the plane perpendicular to y axis at the point $(0,-2,0)$.

- Watch Video Solution

3. What is the image of the point $(-2,3,-5)$ respect to the zx -plane ?

- Watch Video Solution

4. To which coordinate axis is the plane $2 x+3 z=0$ parallel ?
5. How many independent constants are there in the general equation of a plane $a x+b y+c z+d=0$?

- Watch Video Solution

6. Find the equation of the plane, that passes through
the point ($-1,3,0$) and is perpendicular to the line through the points ($1,1,1$) and ($2,-1,-2$).

- Watch Video Solution

7. What is the image of the point $(6,3,-4)$ with respect to
yz-plane ?'

- Watch Video Solution

8. Write the equation of the plane passing through the point ($3,-6,-9$) and parallel to XZ-plane.

- Watch Video Solution

9. Write the angle between the planes $3 x-5 y+2 z-8=0$ and $2 x+4 y+7 z+16=0$.
10. Write the equation of the plane passes through y axis and z-axis.

- Watch Video Solution

11. Write the distance between of the point of intersection to the plane $a x+b y+c z+d=0$ meet $Z-$ axis from the origin.

- View Text Solution

12. What are the direction cosines of the straight lines normal to plane $2 x+y+2 z+8=0$.
13. The equation of plane perpendicular to z-axis and passing through $(1,-2,4)$ is

- Watch Video Solution

14. The distance between the parallel planes

$$
2 x-3 y+6 z+1=0 \quad \text { and } \quad 4 x-6 y+12 z-5=0
$$

is \qquad

- Watch Video Solution

15. The plane $y-z+1=0$ is
16. What is the angle between the planes $y+x=0$ and $z=0$? .

- Watch Video Solution

17. Determine the direction cosines of the normal to the
plane and the distance from the origin to the plane $5 \mathrm{y}+$ $8=0$.
18. Find the equation of the plane which passes through the point $(1,1,2)$ and parallel to the plane $x+2 y-z=5$.

(D) Watch Video Solution

19. Find the equation of the plane with intercept 2,3 and

4 on the X, Y and Z-axes, respectively.

- Watch Video Solution

20. Show that the normals to the planes
$\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=3$ and $\quad \vec{r} \cdot(3 \hat{i}+2 \hat{j}-\hat{k})=0 \quad$ are perpendicular to each other.
21. Find the vector equation of a plane which is at a distance of 3 units from the origin , $2 \hat{i}+3 \hat{j}-6 \hat{k}$ being a normal to the plane. Also get its cartesian equation

- Watch Video Solution

22. If the position vectors of two points A ans B are $3 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}-5 \hat{j}+4 \hat{k}$ respectively, what is the magnitude of $\overrightarrow{A B}$?

D Watch Video Solution

23. passing through the point ($-1,3,2$) perpendicular to the planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.

- Watch Video Solution

24. Find the equation of the plane through the points (1 ,
$2,-3),(2,3,-4)$ and perpendicular to the plane $x+y+z+1$
$=0$.

- Watch Video Solution

25. Find the equation of the plane Paralel to the plane
$2 x-y+3 z+1=0$ and at a distance 3 units away from it.
26. Prove that the four points ($0,4,3$), (-1, -5, -3), (-2, -2, 1) and ($1,1,-1$) lie in one plane. Find the equation of the plane.

- Watch Video Solution

27. Find the equation of the plane passing through the
line $x=y=z$ and the point $(3,2,1)$.

- Watch Video Solution

28. Find the image of the point $(-2,0,3)$ with respect to the plane $\mathrm{y}=3$.

- Watch Video Solution

29. Find the equation of a plane biscting the line segment joining $(-1,4,3)$ and $(5,-2,-1)$ at right angle.

(D) Watch Video Solution

30. Find the equation of the plane passing through the points ($-2,3,5$), ($7,-7,-5$) and ($-2,5,-3$).
31. Find the equation of the plane passing through the intersection of the planes $3 x+y-z=2$ and $x-y+2 z=1$ and the point ($1,0,2$)

- Watch Video Solution

32. Write the equation of the plane
$3 x-4 y+6 z-12=0$ in intercept from and hence obtain the co-ordinates of the point where it meets the co-ordinate axes.
33. Find the distance between the following parallel planes.
$2 x-y+2 z+3=0$ and $4 x-2 y+4 z+5=0$

- Watch Video Solution

34. Write the equation of the plane
$2 x-3 y+5 z+1=0$ in normal from and find its
distance from the origin. Find also the distance between
from the point (3,1,2).

- Watch Video Solution

35. A variable plane is at a constant distance $3 r$ from the origin and meets the axes in A, B and C. Show that the locus of the centroid of the $\triangle A B C$ is $x^{-2}+y^{-2}+z^{-2}=r^{-2}$.

- Watch Video Solution

36. Find the image of the point $(2,3,4)$ with respect to
the plane $x-y+2 z=4$. Obtain the foot of the perpendicular from P on the plane and the corresponding perpendicular distance.

D Watch Video Solution

37. Find the equation of the plane Passing through the intersection of the planes $x+3 y-z+1=0$ and $3 x-y+5 z+3=0$ and is at a distance $2 / 3$ units from origin.

- Watch Video Solution

38. A variable plane is at a constant distance p from the origin and meets the axes at A, B, C. Through A, B, C plane are drawn parallel to the co-ordinate planes. Show that the locus of their points of intersection is
$\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$.

D Watch Video Solution

1. The equation of a plane passing through $(1,1,2)$ and parallel to $x+y+z-1=0$ is \qquad

- Watch Video Solution

2. A plane whose normal has direction ratios
$<3,-2, k>$ is parallel to the line joining (-1,1,- 4)
and $(5,6,-2)$. Then the value of $k=.[6,-4,-1,0]$

- Watch Video Solution

3. Write the equation of the plane
$2 x-3 y+5 z+1=0$ in normal from and find its distance from the origin. Find also the distance between from the point (3,1,2).

D Watch Video Solution

4. What is the distance of the point $(1,1,1)$ from the plane
$y=x$?

- Watch Video Solution

5. A plane whose normal has direction ratios
$<3,-2, k>$ is parallel to the line joining ($-1,1,-4$)
and $(5,6,-2)$. Then the value of $k=.[6,-4,-1,0]$

- Watch Video Solution

6. Find the equation of plane passing through the points
$(2,1,3),(3,2,1)$ and $(1,0,-1)$.

- Watch Video Solution

7. Passing throughthe point $(2,-3,1)$ and
($-1,1-7$) and perpendicular to the plane $x-2 y+5 z+1=0$.
8. Find the distance between the parallel planes $2 x-2 y+$ $z+1=0$ and $4 x-4 y+2 z+3=0$.

- Watch Video Solution

9. Find the equation of the plane passing through the intersection of the plane $x+2 y+3 z-4=0$ and $5 x+3 y+$

$$
6 z+8=0 .
$$

D Watch Video Solution

10. Find the equation of the plane Passing through the intersection of planes
$2 x+3 y-4 z+1=0.2 x-y+z+2=0$ and passing through the point $(3,2,1)$.

- Watch Video Solution

11. Find the equation of the plane Which contains the line of intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y-z+5=0$ and perpendicular of the plane $5 x+3 y+6 z+8=0$.

- Watch Video Solution

12. Show that plane $a x+b y+c z+d=0$ divides the line segment joining $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ in a
ratio $-\frac{a x_{1}+b y_{1}+c z_{1}+d}{a x_{2}+b y_{2}+c z_{2}+d}$

- Watch Video Solution

Topic 3 Practice Questions

1. Write the value of k such that the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2} \quad$ lies on the plane
$2 x-4 y+z=7$

- Watch Video Solution

2. Write the equations of the line
$2 x+z-4=0=2 y+z$ in the symmetrical form.

- Watch Video Solution

3. How many straight lines in space through the origin are equally inclined to the coordinate axes?

- Watch Video Solution

4. Under which conditions the straight line $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n} \quad$ intersects the plane $A x+B y+C z=0$ at a point other than (a,b,c)?

D Watch Video Solution

5. Write the equation of the line passing through the point $(4,-6,1)$ and parallel to the line $\frac{x-1}{1}=\frac{y+2}{3}=\frac{z-1}{-1}$.

D Watch Video Solution

6. What is the point of intersection of the line $x=y=z$ with the plane $x+2 y+3 z=6 ?$

D Watch Video Solution

7. Proved that the line $\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z-3}{1}$ lies on the plane $7 x+5 y+z=0$
8. Find the value of k for which the line $\frac{x-2}{3}=\frac{1-y}{k}=\frac{z-1}{4}$ is parallel to the plane $2 \mathrm{x}+$ $6 y+3 z-4=0$.

- Watch Video Solution

9. Find the point of intersection of the line $2 x-4=3 y=z$ with plane $x+y+z=13$.

- Watch Video Solution

10. The angle between the plane $3 x+3 z-5=0$ and the line $\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-3}{0}$ is.

- Watch Video Solution

11. Find the coordinates of the points of intersection of the line $3 x-3=y+2=3-3 z$ and the plane $2 x+y+z=9$.

- Watch Video Solution

12. What is the angle between the lines $\frac{x+2}{-4}=\frac{y+3}{5}=\frac{z-1}{3}$
$\frac{1-x}{-4}=\frac{y-1}{5}=\frac{2-z}{3}$.

D Watch Video Solution

13. If I, m, n be $D C . s$ of a line, then the line is perpendicular to the plaen $x-3 y+2 z-1=0$ if
[(i) $\mathrm{I}=1, \mathrm{~m}=-3, \mathrm{n}=2$ (ii) $\frac{l}{1}=\frac{m}{-3}=\frac{n}{2}$
(iii) $(1-3 m+2 n=0]^{\prime}$.

D Watch Video Solution

14. Find the equation of a line parallel to Y-axis and passing through the origin.
15. If the line $\frac{x-3}{2}=\frac{y+k}{-1}=\frac{z+1}{-5}$ lies on the plane $2 x-y+z-7=0$, then $\mathrm{k}=-(2,-1,-2)$

- Watch Video Solution

16. Obtain the equation of the line through the point (1,

$$
\begin{aligned}
& \text { 2, 3) and parallel to the line } \\
& x-y+2 z-5=0,3 x+y+z=-6
\end{aligned}
$$

17. Find the point where the line $\frac{x-2}{1}=\frac{y}{-1}=\frac{z-1}{2} \quad$ meets the plane $2 x+y+z=2$.

- Watch Video Solution

18. Prove that the lines $\frac{x+4}{3}=\frac{y+6}{5}=\frac{z-1}{-2}$ and $3 x-2 y+z+5=0=2 x+3 y+4 z-4 \quad$ are coplanar.
19. Find the perpendicular distance of the point
$(-1,3,9)$ from the line $\frac{x-13}{5}=\frac{y+8}{-8}=\frac{z-31}{1}$

D Watch Video Solution

20. Using the method of elemination find the symmetrical form of equation of the line $6 x+8 y+3 z=10$ and $x+2 y+z=3$.

- Watch Video Solution

21. Find the value of r, if the line $\frac{x-1}{1}=\frac{y+2}{3}=\frac{z-1}{-1}=r$ rintersects the plane

$2 x+y+z=9$.

- Watch Video Solution

22. Find the co-ordinates of the point where the perpendicular from the origin meets the line joining the points ($-9,4,5$) and ($11,0,-1$).

D Watch Video Solution

23. Determine the symmetric form of the equation to the
line of intersection of the plane $y+2 z+1=0$ and $x-2 y-2=0$.
24. Find the equation of the plane passing through the
line $x=y=z$ and the point $(3,2,1)$.

- Watch Video Solution

25. Find the intersection of the line passing through the points $(3,-2,1)$ and $(4,1,3)$ with the plane $4 x+y-2 z-11=$ 0.

- View Text Solution

26. Prove that the lines

$$
\frac{x+3}{2}=\frac{y+5}{3}=\frac{z-7}{-3} \text { and } \frac{x+1}{4}=\frac{y+1}{5}=\frac{z+1}{-1}
$$

are coplanar.

(D) Watch Video Solution

27. Find the equation of the straight line which passes
through the point $(4,-5,6)$ and parallel to the join of the points of (5, -3, 2) and (4, 9, 1)..

- Watch Video Solution

28. Find the angle between the pair of lines
$\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$
$\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$
29. Find the shortest distance between the lines
$\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$
$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$.

- Watch Video Solution

30. Find the angle between the plane $x+y+4=0$ and the line $\frac{x+3}{2}=\frac{y-1}{1}=\frac{z+4}{-2}$.

- Watch Video Solution

31. Find the equation of the plane through ($6,3,1$) and
$(8,-5,3)$ parallel to x-axls.

- Watch Video Solution

32. Find the shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$

- View Text Solution

33. Show that the line joining the points $(0,2,-4)$ and
($-1,1-2$) and the lines joining the points
$(-2,3,3)$ and $(-3,-2,1)$ are co-plannr. Find their point of intersection.

- Watch Video Solution

34. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$, measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$

D Watch Video Solution

35. Find a symmetric form of the equation to the lines
$x+2 y-z-2=0$ and $2 x-y+3 z-4=0$.

Watch Video Solution

36. Find the coordinates of the foot of perpendicular drawn from the point $A(1,8,4)$ to the line joining the points $\mathrm{B}(0,-1,3)$ and $\mathrm{C}(2,-3,1)$

- Watch Video Solution

37. Find the coordinate of the point, where the line trough ($3,-4,5$) and ($2,-3,1$) crosses the plane passing through the points (2,2,1), (3, 0, 1) and (4, -1, 0).

- View Text Solution

Topic Test 3

1. Find the cartesian equation of the line which passes through the point $(-2,4,-5)$ and is parallel to the line

$$
\frac{x+3}{3}=\frac{4-y}{5}=\frac{z+8}{6} .
$$

2. The equation of straight line equally inclined to the axes and equidistant from the point $(1,-2)$ and $(3,4)$ is

- View Text Solution

3. Find the equation of lines joining the points. (a,a,a) and ($\mathrm{a}, \mathrm{O}, \mathrm{a}$)

- Watch Video Solution

4. Find the symmetric form of equation of the lines $x+$
$2 y+z-3=0=6 x+8 y+3 z-10$.

- View Text Solution

> 5.
> Prove
> that
> the
> lines
> $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$
are coplanar.

- Watch Video Solution

6. Find the angle between the plane $x+y+4=0$ and
the line $\frac{x+3}{2}=\frac{y-1}{1}=\frac{z+4}{-2}$.

- Watch Video Solution

7. Find the acute angle between the lines passing through

$$
(-3,-1,0),(2,-3,1) \quad \text { and }
$$

$(1,2,3),(-1,4,-2)$ respectively.

- Watch Video Solution

8. Prove that the lines $x=a z+b, y=c z+d$ and
$x=a_{1} z+b_{1}, y=c_{1} z+d_{1} \quad$ are \quad perpendicular if $a a_{1}+\mathrm{cc}_{1}+1=0$.
9. Find the angle between the lines
$\frac{x-3}{1}=\frac{y-2}{2}=\frac{z+4}{2}$ and $\frac{x-5}{3}=\frac{y+2}{2}=\frac{z}{6}$.

D Watch Video Solution

10. For what value of k lines
$\frac{x+2}{-k}=\frac{y-3}{2}=\frac{z+4}{k}$ and $\frac{x-4}{5}=\frac{y-3}{k}=\frac{z+1}{2}$
are perpendicular to each other?

- Watch Video Solution

> 11.
> Show
> that
> the
> lines
> $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$
intersect each other.

- Watch Video Solution

12. Find the coordinates of the point, where the line $\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}$ meets the plane $x+y+4 z=6$.

D Watch Video Solution

13. Find the distance of the point $(2,3,4)$ from the plane
$3 x+2 y+2 z+5=0$ measured parallel to the line $\frac{x+3}{3}=\frac{y-2}{6}=\frac{z}{2}$
14. Find the length and the foot of perpendicular drawn from the point $(2,-1,5)$ to the line $\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11}$.

- Watch Video Solution

15. Find the vector and cartesian equations of line passing through the point (1,2-4) and perpendicular to two lines

$$
\begin{aligned}
& \frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \\
& \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5} .
\end{aligned}
$$

and
16. Cartesian equation of line $A B$ is
$\frac{2 x-1}{2}=\frac{4-y}{7}=\frac{z+1}{2}$. Write the direction ratios of a line parallel to $A B$.

- Watch Video Solution

17. Find the co-ordinates of the point where the line joining $(3,4,-5)$ and $(2,-3,1)$ meets the plane $2 x+y+z-7=0$.

D Watch Video Solution

18. Find the distance of the point $(1,-1,-10)$ from the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$ measured parallelto the line $\frac{x+2}{2}=\frac{y-3}{-3}=\frac{z-4}{8}$

- Watch Video Solution

19. Find equation of a plane through $(2,-3,1)$ and perpendlcular to the line joining the points $(3,4,-1)$ and $(2,-1,5)^{\prime}$.

- Watch Video Solution

20. Find the equation of the plane containg the line $x+2$
$=2 y-1=3 z$ and parallel to the line $x=1-5 y .=2 z-7$. Also find the shortest distance between the two lines.

- View Text Solution

Chapter Test

1. If a line makes angles $90^{\circ}, 135^{\circ}, 45^{\circ}$ with the X, Y and

Z-axes, respectively. Find its direction cosines.

- Watch Video Solution

2. Find the direction cosines of the line segment joining the points $A(7,-5,9)$ and $B(5,-3,8)$.

- Watch Video Solution

3. Show that the points $\mathrm{A}(2,3,-4), \mathrm{B}(1,-2,3)$ and $\mathrm{C}(3,8,-11)$ are collinear.

- Watch Video Solution

4. If the x-coordinate of a point P on the join of $Q(2,2,1)$ and $R(3,8,11)$ are colinear.
5. Find the equation of a line parallel to X - axis and passing through the origin.

D Watch Video Solution

6. Find the equation of a plane that cuts the coordinate axes at $(a, 0,0),(0, b, 0)$ and ($0,0, c$).

- Watch Video Solution

7. Find the distance of the point whose position vector is
$(2 \hat{i}+\hat{j}-\hat{k})$ from the plane $r .(\hat{i}-2 \hat{j}+4 \hat{k})=9$.
8. Find the ratio in which the line segment through
$(2,4,5),(3,5,-4)$ is divided by xy-plane.

- Watch Video Solution

9. State true or False .The planes $2 x+4 y-z+1=0$ and $x-2 y-6 z+3=0$ are perpendicular to each other.
10. Find the equation of the plane .Passing through the point $(2,3-1)$ and parallel to the plane $3 x-4 y+7 z=0$.

(D) Watch Video Solution

11. State which of the following statements are true (T) or false(F)

The line $\frac{x-1}{2}=\frac{y-1}{2}=\frac{z-1}{2}$ pass though the origin.
12. Find the coordinates of the point, where the line passing through $(5,1,6)$ and $(3,4,1)$ cross $Y Z$-plane.

- Watch Video Solution

13. A plane meets the coordinate axes at A, B and C respectivély. If the centroid of the triangle $A B C$ is $(-1,2,5)$ then find the equation of the plane.

- Watch Video Solution

14. Find the perpendicular distance of point $(1,0,0)$ in
from the lines $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z-10}{8}$ and ${ }^{\prime}(\mathrm{x}$
coordinate of foot of perpendicular and equation of perpendicular.

- Watch Video Solution

15. Show that the shortest distance between the lines
$x+a=2 y=-12 z$ and $x=y+2 a=6 z-6 a$ is $2 a$.

D Watch Video Solution

16. Find the equation of two planes through the origin, parallel to the line $\frac{x-1}{2}=\frac{y+3}{-1}=\frac{z+1}{-2}$ and at a distance $\frac{5}{3}$ from it.
17. If a line makes angles α, β and γ with the positive direction of coordinate axes, then write the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$.

D Watch Video Solution

18. Find the angle between the lines whose dcs. $\mathrm{L}, \mathrm{m}, \mathrm{n}$

> are connected by the relation, $3 l+m+5 n=0$ and $6 m n-2 n l+5 l m=0$
19. Bisecting the line segment joining $(-1,4,3)$ and $(5,-2,-1)$ at right angles.

- Watch Video Solution

20. Find the equation of the plane through the points (2 ,

2,1) and (9, 3, 6) and perpendicular to the plane $2 x+6 y+$ $6 z-1=0$.

- Watch Video Solution

21. If the edges of a rectangular parallelopiped are of lengths a, b, c, then the angle between four diagonals
are $\cos ^{-1}\left(\frac{ \pm a^{2} \pm b^{2} \pm c^{2}}{a^{2}+b^{2}+c^{2}}\right)$.

(D) Watch Video Solution

22. Find the distance of the point $(-1,5,-10)$ form the point of intersection of the line
$\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\gamma(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane
$\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

- View Text Solution

23. Find the equation of the straight line perpendicular to the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-6}{7}$ and lyinng in the plane $x-2 y+4 z-51=0$.

- Watch Video Solution

24. Find the distance of the point $(3,-4,5)$ from the plane $2 x+5 y-6 z-19=0$ measured parallel to the line $\frac{x-1}{2}=\frac{y}{1}=\frac{z+3}{-2}$.
