

MATHS

BOOKS - ARIHANT PRAKASHAN

THREE DIMENSIONAL GEOMETRY

Topic 1 Practice Questions

1. Write the direction cosines of Z-axis.

2. If the distance between the points (-1, -1, z) and (1, -1, 1)

is 2 then z =____.

Watch Video Solution

3. A line makes angles 60° and 45° with the positive direction of X-axis and Y-axis, respectively. What acute angle does it make with the Z-axis?

Watch Video Solution

4. Fill in the blanks in the length of the projection of the line segment joining (1,3,-1) and (3,2,4)on z-axis is _____. [1, 3, 4, 5]

6. If l_1, m_1, n_1 and l_2, m_2, n_2 are the direction cosines of two mutually perpendicular lines show that the Direction Cosines of the line perpendicular to both of them are $m_1n_2 - n_1m_2, n_1l_2 - l_1n_2, l_1m_2 - m_1l_2$

7. Prove that the measure of the angle between two main diagonals of a cube is $\cos^{-1}\frac{1}{3}$.

Watch Video Solution

8. Find the acute angle between the lines passing through
$$(-3, -1, 0), (2, -3, 1)$$
 and $(1, 2, 3), (-1, 4, -2)$ respectively.

Watch Video Solution

9. Find the angle between the lines whose direction cosines are given by the equations. 3l + m + 5n = 0, 6mn - 2nl + 5lm = 0.

11. Prove that the two lines whose direction cosines are

connected by the equations

 $l+2m+3n=0,\, 3lm-4\ln+mn=0$ are

perpendicular to each other.

1. Write the ratio in which the line joining the points (2,3,4) and (-3, 5, -4) is divided by yz-plane.

Watch Video Solution

2. If a line makes angle $\frac{\pi}{3}$ and $\frac{\pi}{4}$ with X - axis Y - axis respectively, then find the angle made by the line with Z - axis.

3. Show that the point (3, -2, 4), (1, 1, 1) and (-1, 4,-2)are

collinear.

6. If A, B, C, D are the points (6, 3, 2), (3, 5, 7), (2, 3, -1) and (3, 5, -3) respectively, then find the projection of \overrightarrow{ABonCD}

7. Prove the angle between the diagonal of one of the faces of the cube and the diagonal of the cube intersecting the diagonal of the face of the cube is $\cos^{-1}\sqrt{\frac{2}{3}}$

8. A line makes angles α , β , γ , δ with the four main diagonals of a cube. Prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$

Watch Video Solution

Topic 2 Practice Questions

1. Write the distance between parallel planes

2x - y + 3z = 4 and 2x - y + 3z = 18.

2. Write the equation of the plane perpendicular to y-axis at the point (0,-2, 0).
Watch Video Solution

3. What is the image of the point (-2, 3, -5) respect to

the zx-plane ?

Watch Video Solution

4. To which coordinate axis is the plane 2x + 3z = 0

parallel ?

5. How many independent constants are there in the

general equation of a plane ax + by + cz + d = 0?

Watch Video Solution

6. Find the equation of the plane, that passes through the point (-1,3,0) and is perpendicular to the line through the points (1, 1, 1) and (2,-1,-2).

7. What is the image of the point (6, 3, -4) with respect to

yz- plane ? '

point (3, -6, -9) and parallel to XZ-plane.

9. Write the angle between the planes 3x - 5y + 2z - 8 = 0

and 2x + 4y + 7z + 16 = 0.

10. Write the equation of the plane passes through y-axis and z-axis.

11. Write the distance between of the point of intersection to the plane ax + by + cz + d = 0 meet Z - axis from the origin.

View Text Solution

12. What are the direction cosines of the straight lines

normal to plane 2x + y + 2z + 8 = 0.

13. The equation of plane perpendicular to z-axis and passing through $(1,\ -2,4)$ is____

14. The distance between the parallel planes 2x - 3y + 6z + 1 = 0 and 4x - 6y + 12z - 5 = 0 is____

Watch Video Solution

Watch Video Solution

15. The plane y - z + 1 = 0 is_____

z = 0 ? .

Watch Video Solution

17. Determine the direction cosines of the normal to the

plane and the distance from the origin to the plane 5y +

8 = 0.

18. Find the equation of the plane which passes through

the point (1, 1, 2) and parallel to the plane x + 2y - z = 5.

19. Find the equation of the plane with intercept 2, 3 and

4 on the X, Y and Z-axes, respectively.

20. Show that the normals to the planes
$$\overrightarrow{r}.\left(\hat{i}-\hat{j}+\hat{k}
ight)=3$$
and $\overrightarrow{r}.\left(3\hat{i}+2\hat{j}-\hat{k}
ight)=0$ are

perpendicular to each other.

21. Find the vector equation of a plane which is at a distance of 3 units from the origin , $2\hat{i} + 3\hat{j} - 6\hat{k}$ being a normal to the plane . Also get its cartesian equation

22. If the position vectors of two points A ans B are $3\hat{i} + 2\hat{j} + \hat{k}$ and $2\hat{i} - 5\hat{j} + 4\hat{k}$ respectively, what is the magnitude of \overrightarrow{AB} ?

23. passing through the point (-1, 3, 2) perpendicular

to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

24. Find the equation of the plane through the points (1,

2, -3), (2,3, -4) and perpendicular to the plane x + y + z + 1

= 0.

Watch Video Solution

25. Find the equation of the plane Paralel to the plane 2x - y + 3z + 1 = 0 and at a distance 3 units away from it.

26. Prove that the four points (0, 4, 3), (-1, -5, -3), (-2, -2, 1) and (1, 1, -1) lie in one plane. Find the equation of the plane.

Watch Video Solution

27. Find the equation of the plane passing through the

line x = y = z and the point (3,2,1).

28. Find the image of the point (-2,0,3) with respect to the plane y = 3.Watch Video Solution

29. Find the equation of a plane biscting the line segment joining (-1, 4, 3) and (5, -2, -1) at right angle.

Watch Video Solution

30. Find the equation of the plane passing through the

points (-2, 3, 5), (7,-7,-5) and (-2, 5, -3).

31. Find the equation of the plane passing through the intersection of the planes 3x + y - z = 2 and x - y + 2z = 1 and

the point (1, 0,2)

Watch Video Solution

32. Write the equation of the plane 3x - 4y + 6z - 12 = 0 in intercept from and hence obtain the co-ordinates of the point where it meets the co-ordinate axes.

33. Find the distance between the following parallel

planes.

2x-y+2z+3=0 and 4x-2y+4z+5=0

Watch Video Solution

34. Write the equation of the plane 2x - 3y + 5z + 1 = 0 in normal from and find its distance from the origin. Find also the distance between from the point (3,1,2).

35. A variable plane is at a constant distance 3r from the origin and meets the axes in A, B and C. Show that the locus of the centroid of the ΔABC is $x^{-2} + y^{-2} + z^{-2} = r^{-2}$.

36. Find the image of the point (2, 3, 4) with respect to the plane x - y + 2z = 4. Obtain the foot of the perpendicular from P on the plane and the corresponding perpendicular distance.

37. Find the equation of the plane Passing through the intersection of the planes x + 3y - z + 1 = 0 and 3x - y + 5z + 3 = 0 and is at a distance 2/3 units from origin.

Watch Video Solution

38. A variable plane is at a constant distance p from the origin and meets the axes at A,B,C. Through A,B,C plane are drawn parallel to the co-ordinate planes. Show that the locus of their points of intersection is $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2}$.

1. The equation of a plane passing through $\left(1,1,2
ight)$ and

parallel to x + y + z - 1 = 0 is_____

Watch Video Solution

2. A plane whose normal has direction ratios < 3, -2, k > is parallel to the line joining (-1,1,- 4) and (5,6,-2). Then the value of k =.......[6,-4,-1,0]

3. Write the equation of the plane 2x - 3y + 5z + 1 = 0 in normal from and find its distance from the origin. Find also the distance between from the point (3,1,2).

4. What is the distance of the point (1,1,1) from the plane

y=x?

5. A plane whose normal has direction ratios < 3, -2, k > is parallel to the line joining (-1,1,- 4)

(2, 1,3), (3, 2, 1) and (1, 0, -1).

Watch Video Solution

7. Passing through the point (2, -3, 1) and (-1, 1-7) and perpendicular to the plane

$$x - 2y + 5z + 1 = 0.$$

8. Find the distance between the parallel planes 2x - 2y +

```
z + 1 = 0 and 4x - 4y + 2z + 3 = 0.
```


10. Find the equation of the plane Passing through theintersectionofplanes

2x+3y-4z+1=0.2x-y+z+2=0and passing

through the point (3,2,1).

11. Find the equation of the plane Which contains the line of intersection of the planes x + 2y + 3z - 4 = 0and 2x + y - z + 5 = 0 and perpendicular of the plane 5x + 3y + 6z + 8 = 0.

Watch Video Solution

12. Show that plane ax + by + cz + d = 0 divides the line segment joining (x_1, y_1, z_1) and (x_2, y_2, z_2) in a

ratio
$$-\frac{ax_1 + by_1 + cz_1 + d}{ax_2 + by_2 + cz_2 + d}$$

Watch Video Solution
Topic 3 Practice Questions

Ax + By + Cz = 0 at a point other than (a,b,c)?

5. Write the equation of the line passing through the

point (4, -6, 1) and parallel to the line $\frac{x-1}{1} = \frac{y+2}{3} = \frac{z-1}{-1}.$

Watch Video Solution

6. What is the point of intersection of the line x = y = z

with the plane x + 2y + 3z = 6?

Watch Video Solution

A REAL PROPERTY AND A REAL

7. Proved that the line $rac{x-1}{2}=rac{y+2}{-3}=rac{z-3}{1}$ lies on the plane 7x+5y+z=0

8. Find the value of k for which the line $\frac{x-2}{3} = \frac{1-y}{k} = \frac{z-1}{4}$ is parallel to the plane 2x + 6y + 3z - 4 = 0.

Watch Video Solution

2x - 4 = 3y = z with plane x + y + z = 13.

10. The angle between the plane 3x + 3z - 5 = 0 and the line $\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-3}{0}$ is. Watch Video Solution

11. Find the coordinates of the points of intersection of the line 3x - 3 = y + 2 = 3 - 3z and the plane 2x + y + z = 9.

Watch Video Solution

12. What is the angle between the lines $\frac{x+2}{-4} = \frac{y+3}{5} = \frac{z-1}{3}$ and

$$\frac{1-x}{-4} = \frac{y-1}{5} = \frac{2-z}{3}.$$
Watch Video Solution

13. If l,m,n be DC.s of a line, then the line is perpendicular to the plaen x - 3y + 2z - 1 = 0 if [(i) l = 1, m = - 3,n = 2 (ii) $\frac{l}{1} = \frac{m}{-3} = \frac{n}{2}$ (iii) (l - 3m + 2n = 0]`.

Watch Video Solution

14. Find the equation of a line parallel to Y-axis and passing through the origin.

15. If the line $\frac{x-3}{2} = \frac{y+k}{-1} = \frac{z+1}{-5}$ lies on the plane 2x-y+z-7 = 0, then k = -(2, -1, -2) Watch Video Solution

16. Obtain the equation of the line through the point (1,

- 2, 3) and parallel to the line
- x-y+2z-5=0, 3x+y+z=-6

Watch Video Solution

18. Prove that the lines
$$\frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2}$$
 and $3x - 2y + z + 5 = 0 = 2x + 3y + 4z - 4$ are co-

planar.

19. Find the perpendicular distance of the point (-1, 3, 9) from the line $\frac{x-13}{5} = \frac{y+8}{-8} = \frac{z-31}{1}$ Watch Video Solution

20. Using the method of elemination find the symmetrical form of equation of the line 6x + 8y + 3z = 10 and x + 2y + z = 3.

Watch Video Solution

21. Find the value of r, if the line $\frac{x-1}{1} = \frac{y+2}{3} = \frac{z-1}{-1} = r$ rintersects the plane

$$2x + y + z = 9.$$

22. Find the co-ordinates of the point where the perpendicular from the origin meets the line joining the points (-9, 4, 5) and (11, 0, -1).

Watch Video Solution

23. Determine the symmetric form of the equation to the line of intersection of the plane y + 2z + 1 = 0 and x - 2y - 2 = 0.

24. Find the equation of the plane passing through the

line x = y = z and the point (3,2,1).

Watch Video Solution

25. Find the intersection of the line passing through the points (3, -2, 1) and (4, 1, 3) with the plane 4x + y - 2z - 11 = 0.

View Text Solution

26. Prove that the lines
$$\frac{x+3}{2} = \frac{y+5}{3} = \frac{z-7}{-3}$$
 and $\frac{x+1}{4} = \frac{y+1}{5} = \frac{z+1}{-1}$

27. Find the equation of the straight line which passes through the point (4, -5, 6) and parallel to the join of the points of (5, -3, 2) and (4, 9, 1).

Watch Video Solution

28. Find the angle between the pair of lines

$$rac{x+3}{3} = rac{y-1}{5} = rac{z+3}{4}$$
 and $rac{x+1}{1} = rac{y-4}{1} = rac{z-5}{2}$

29. Find the shortest distance between the lines
$$\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$$
and
$$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}.$$

Watch Video Solution

30. Find the angle between the plane x + y + 4 = 0and the line $\frac{x+3}{2} = \frac{y-1}{1} = \frac{z+4}{-2}$.

Watch Video Solution

31. Find the equation of the plane through (6,3,1) and

$$(8,\ -5,3)$$
 parallel to x-axls.

33. Show that the line joining the points (0, 2, -4) and (-1, 1-2) and the lines joining the points (-2, 3, 3) and (-3, -2, 1) are co-plannr. Find their point of intersection.

34. Find the distance of the point (1, -2, 3) from the plane x - y + z = 5, measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$

Watch Video Solution

35. Find a symmetric form of the equation to the lines

x + 2y - z - 2 = 0 and 2x - y + 3z - 4 = 0.

36. Find the coordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, -1, 3) and C(2, -3, 1)

37. Find the coordinate of the point, where the line trough (3, -4, 5) and (2, -3, 1) crosses the plane passing through the points (2,2,1), (3, 0, 1) and (4, -1, 0).

2. The equation of straight line equally inclined to the

axes and equidistant from the point (1,-2) and (3,4) is

View Text Solution

3. Find the equation of lines joining the points. (a,a,a) and (a,0,a)

Watch Video Solution

4. Find the symmetric form of equation of the lines x +

$$2y + z - 3 = 0 = 6x + 8y + 3z - 10.$$

6. Find the angle between the plane x+y+4=0 and

the line
$$\frac{x+3}{2} = \frac{y-1}{1} = \frac{z+4}{-2}$$
.

7. Find the acute angle between the lines passing through (-3, -1, 0), (2, -3, 1) and (1, 2, 3), (-1, 4, -2) respectively.

Watch Video Solution

8. Prove that the lines x=az+b, y=cz+d and $x=a_1z+b_1, y=c_1z+d_1$ are perpendicular if $aa_1+\mathrm{cc}_1+1=0.$

9. Find the angle between the lines

$$\frac{x-3}{1} = \frac{y-2}{2} = \frac{z+4}{2} \text{ and } \frac{x-5}{3} = \frac{y+2}{2} = \frac{z}{6}.$$
Watch Video Solution

intersect each other.

12. Find the coordinates of the point, where the line $\frac{x+1}{2} = \frac{y+2}{3} = \frac{z+3}{4}$ meets the plane x+y+4z = 6.

Watch Video Solution

13. Find the distance of the point (2, 3, 4) from the plane

$$3x+2y+2z+5=0$$
 measured parallel to the line $rac{x+3}{3}=rac{y-2}{6}=rac{z}{2}$

14. Find the length and the foot of perpendicular drawn

from the point (2, -1, 5) to the line

$$rac{x-11}{10} = rac{y+2}{-4} = rac{z+8}{-11}$$

Watch Video Solution

15. Find the vector and cartesian equations of line passing through the point (1, 2 - 4) and perpendicular to

two lines

$$rac{x-8}{3} = rac{y+19}{-16} = rac{z-10}{7} \ rac{x-15}{3} = rac{y-29}{8} = rac{z-5}{-5}.$$

and

16. Cartesian equation of line AB is $\frac{2x-1}{2} = \frac{4-y}{7} = \frac{z+1}{2}$. Write the direction ratios

of a line parallel to AB.

Watch Video Solution

17. Find the co-ordinates of the point where the line joining (3, 4, -5) and (2, -3, 1) meets the plane 2x + y + z - 7 = 0.

18. Find the distance of the point (1, -1, -10) from

the line $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$ measured parallelto the line $\frac{x+2}{2} = \frac{y-3}{-3} = \frac{z-4}{8}$

Watch Video Solution

19. Find equation of a plane through (2, -3, 1) and perpendicular to the line joining the points (3, 4, -1) and (2,-1,5).

20. Find the equation of the plane containg the line x + 2

= 2y - 1 = 3z and parallel to the line x = 1 - 5y. = 2z - 7. Also

find the shortest distance between the two lines.

2. Find the direction cosines of the line segment joining

the points A(7, -5,9) and B (5,-3,8).

3. Show that the points A(2, 3, -4), B(1, -2, 3) and C(3, 8, -11)

are collinear.

Watch Video Solution

4. If the x-coordinate of a point P on the join of Q(2,2,1)

and R(3,8,11) are colinear.

5. Find the equation of a line parallel to X - axis and

passing through the origin.

6. Find the equation of a plane that cuts the coordinate

axes at (a, 0, 0), (0,b,0) and (0, 0,c).

Watch Video Solution

7. Find the distance of the point whose position vector is

$$\left(2\hat{i}+\hat{j}-\hat{k}
ight)$$
 from the plane $r.\left(\hat{i}-2\hat{j}+4\hat{k}
ight)=9.$

8. Find the ratio in which the line segment through (2,4,5),(3,5,-4) is divided by xy-plane.

Watch Video Solution

9. State true or False .The planes 2x + 4y - z + 1 = 0

and x-2y-6z+3=0 are perpendicular to each

other.

10. Find the equation of the plane .Passing through the point (2, 3 - 1) and parallel to the plane 3x - 4y + 7z = 0.

Watch Video Solution

11. State which of the following statements are true (T) or false(F) The line $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-1}{2}$ pass though the origin.

12. Find the coordinates of the point, where the line passing through (5, 1, 6) and (3, 4, 1) cross YZ-plane.

13. A plane meets the coordinate axes at A, B and C respectively. If the centroid of the triangle ABC is (-1, 2, 5) then find the equation of the plane.

Watch Video Solution

14. Find the perpendicular distance of point (1,0,0) in from the lines $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z-10}{8}$ and `(x

coordinate of foot of perpendicular and equation of

perpendicular.

View Text Solution

17. If a line makes angles α , β and γ with the positive direction of coordinate axes, then write the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$.

19. Bisecting the line segment joining (-1, 4, 3) and (5, -2, -1) at right angles.

Watch Video Solution

20. Find the equation of the plane through the points (2, 2,1)and (9, 3, 6)and perpendicular to the plane 2x + 6y + 2x + 2

6z -1 = 0.

Watch Video Solution

21. If the edges of a rectangular parallelopiped are of lengths a, b, c, then the angle between four diagonals

are
$$\cos^{-1} igg(rac{\pm a^2 \pm b^2 \pm c^2}{a^2 + b^2 + c^2} igg).$$

Watch Video Solution

22. Find the distance of the point (-1, 5, -10) form the point of intersection of the line $\vec{r} = (2\hat{i} - \hat{j} + 2\hat{k}) + \gamma(3\hat{i} + 4\hat{j} + 2\hat{k})$ and the plane $\vec{r} \cdot (\hat{i} - \hat{j} + \hat{k}) = 5.$

View Text Solution

23. Find the equation of the straight line perpendicular to the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-6}{7}$ and lyinng in the plane x - 2y + 4z - 51 = 0.

