©゙ doubtnut

 India's Number 1 Education App
MATHS

BOOKS - ARIHANT PRAKASHAN

VECTORS

Topic 1 Practice Questions 1 Mark Questions

1. Write the unit vectors in R^{3}, which makes angles 45° and 60°
with positive directions of X -axis and Y -axis, respectively.

- View Text Solution

2. Is $\overrightarrow{0}$ unique
3. Write the value of α, if the vector $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}$ and $\vec{b}=\alpha \hat{i}-\hat{j}+2 \hat{k}$ are parallel.

- Watch Video Solution

4. If $|k \vec{a}|=1$, then
A. $\vec{a}=\frac{1}{k}$
B. $\vec{a}=\frac{1}{|k|}$
C. $k=\frac{1}{|\vec{a}|}$
D. $k= \pm \frac{1}{|\vec{a}|}$
5. Write the values of m and n for which the vectors $(m-1) \hat{i}+(n+2) \hat{j}+4 \hat{k}$ and $(m+1) \hat{i}+(n-2) \hat{j}+8 \hat{k}$ will be parallel.

- Watch Video Solution

6. How many directions a null vector has?

- Watch Video Solution

7. If the position vectors of the points A, B, C are $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-3 \hat{k}$ respectively, then prove that A, B, C are collinear.
8. If A, B, C, D, E are the.vertices of a regular pentagon, find the vector sum $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{D E}+\overrightarrow{E A}$.

- Watch Video Solution

9. Write the unit vector along $\overrightarrow{P Q}$ joining the points $P(7,-4,5)$ to $Q(7,1,5)$.

- Watch Video Solution

10. What is the unit vector in the direction of the vector $3 \hat{i}+4 \hat{j}$
?
11. If $\overrightarrow{O P_{1}}=4 \hat{i}+3 \hat{j}$ and $\overrightarrow{O P_{2}}=8 \hat{j}-5 \hat{j}$, then what is $\overrightarrow{P_{1} P_{2}}$?

D Watch Video Solution

12. If $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-2 \hat{j}+2 \hat{k} \quad$ and
$\vec{c}=-\hat{i}+2 \hat{j}+\hat{k}$, then
A. \vec{a} and \vec{b} have the same directions
B. \vec{a} and \vec{c} have opposite directions
C. \vec{b} and \vec{c} have opposite directions
D. no pair of vectors have same directions

Answer: D

13. The direction cosines of the vectors $\overrightarrow{P Q}$ where $\overrightarrow{P Q}=(1,0,-2)$ and $\overrightarrow{O Q}=(3,-2,0)$ are
A. $2,-2,2$
B. $4,-2,-2$
C. $\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
D. $\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}$

Answer: C

- Watch Video Solution

14. If $\vec{a}=x \hat{i}+2 \hat{j}-z \hat{k}$ and $\vec{b}=3 \hat{i}-y \hat{j}+\hat{k}$ are two equal vectors, then find the value of $x+y+z$.
15. Find the vector from origin to the mid-point of the vector $\overrightarrow{P_{1} P_{2}}$ joining the points $P_{1}(4,3)$ and $P_{2}(8,-5)$.

- Watch Video Solution

16. Find a vector in the direction of vector $\vec{a}=\hat{i}-2 \hat{j}$ that has magnitude 7 units.

- Watch Video Solution

17. If $\mathrm{P}(1,5,4)$ and $\mathrm{Q}(4,1,-2)$, then find the direction ratios of $\overrightarrow{P Q}$.

- Watch Video Solution

1. Prove that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}, 3 \hat{i}-4 \hat{j}-4 \hat{k}$ are the sides of a right angled triangle.

D Watch Video Solution

2. The projection of a line segment $\overline{O P}$, through origin O , on the co-ordinate axes are $6,2,3$. Find the length of the line segment OP and its direction cosines.

- Watch Video Solution

3. Prove that
$|a+b| \leq|a|+|b|$
State when equality will hold,
4. Prove that the lines joining the midpoints of consecutive sides of a quadrilateral form a parallelogram using vector method.

- Watch Video Solution

5. $A B C D$ is a parallelogram. Using vector method prove that line joing A and the mid -point of $B C$ intersects the diagonal $B D$ in the ratio 1: 2 .

- View Text Solution

6. If $\vec{a}=(2,-2,1), \vec{b}=(2,3,6)$ and $\vec{c}=(-1,0,2)$,Find the magnitude and direction of $\vec{a}+\vec{b}-\vec{c}$.
7. Show that the point $(3,-2,4),(1,1,1)$ and $(-1,4,-2)$ are collinear.

- Watch Video Solution

8. Show that the vectors $\vec{a}=3 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-3 \hat{j}+5 \hat{k}$ and $\vec{c}=2 \hat{i}+\hat{j}-4 \hat{k}$ form a right angled triangle.

D Watch Video Solution

9. If $\overrightarrow{P O}+\overrightarrow{O Q}=\overrightarrow{Q O}+\overrightarrow{O R}$, the show that the point P, Q and R are collinear.

View Text Solution

10. If the sum of two unit vectors is a unit vector, show that the magnitude of their difference is $\sqrt{3}$.

- Watch Video Solution

11. A vector \vec{r} is inclined at equal angles to the three axes. If the magnitude of \vec{r} is $2 \sqrt{3}$ units, then find the value of \vec{r}.

- Watch Video Solution

12. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k} \quad$ and
$\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$ and find a vector of magnitude 6 units which is parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.
13. Compute the magnitude of the following vectors
$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k}$
and $\vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$.

- Watch Video Solution

2. Find the value of x and y, so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.

- Watch Video Solution

3. find the unit vector in the direction of ' $P Q$ ' where P and Q are the points (1,2,3) and (4,5,6).
4. Find the unit vector in the direction of the vector $r_{1}-r_{2}$, where $r_{1}=\hat{i}+2 \hat{j}+\hat{k}$ and $r_{2}=3 \hat{i}+\hat{j}-5 \hat{k}$.

- Watch Video Solution

5. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

6. If $\vec{a}+\vec{b}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{a}-\vec{b}=2 \hat{i}+4 \hat{j}+2 \hat{k}$, then find the scalar components of \vec{a} and \vec{b}
7. Prove that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}, 3 \hat{i}-4 \hat{j}-4 \hat{k}$ are the sides of a right angled triangle.

- Watch Video Solution

8. Find the unit vector parallel to the sum of the vectors $\vec{a}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$. Also, find its direction cosines.

D Watch Video Solution

9. If the vectors $3 \hat{i}+2 \hat{j}-\hat{k}$ and $6 \hat{i}-4 p \hat{j}+q \hat{k}$ are parallel, then find the values of p and q.
10. If the points with position vector $10 \hat{i}+3 \hat{j}, 12 \hat{i}-\hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear, find the value of a.

- Watch Video Solution

11. If O is origin and P_{3} is the mid - point of the line joining $P_{1}(2,-1)$ and $P_{2}(-4,5)$ then find $\overrightarrow{O P_{3}}$.

D Watch Video Solution

12. Find the vectors from the origin to the points of trisection the vector $\overrightarrow{P_{1} P_{2}}$ joining $P_{1}(-4,3)$ and $P_{-} 2(5,-12)$.

- Watch Video Solution

13. If $\vec{a}=(2,-2,1), \vec{b}=(2,3,6)$ and $\vec{c}=(-1,0,2)$,Find the magnitude and direction of $\vec{a}+\vec{b}-\vec{c}$.

- Watch Video Solution

14. Find the vectors from the origin to the intersection of the medians of the triangle whose vertices are $A(5,2,1), B(-4,7,0)$ and $C(5,-3,5)$

(D) Watch Video Solution

15. Let the position vectors of A and B be $3 \hat{i}-\hat{j}+\hat{k}$ and $-\hat{i}+2 \hat{j}+3 \hat{k}$. Find the vector $\overrightarrow{A B}$ and its magnitude Also, determine the unit vector in the direction of $\overrightarrow{A B}$.
16. $A B C D$ is a quadrilateral. If M and N are the mid points of the sides $\overrightarrow{B D}$ and $\overrightarrow{A C}$, respectively. Show that $\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{C B}+\overrightarrow{C D}=4 \overrightarrow{N M}$

(D) Watch Video Solution

Topic 2 Practice Questions 1 Mark Questions

1. If $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=144$, write the value of $a b$.

D Watch Video Solution

2. It the vectors \vec{a}, \vec{b} and \vec{c} form the sides $\overrightarrow{B C}, \overrightarrow{C A}$ and $\overrightarrow{A B}$ respectively of a triangle $A B C$, then write the value of
$\vec{a} \times \vec{c}+\vec{b} \times \vec{c}$.

- Watch Video Solution

3. If $a=3 \hat{i}+\hat{j}+2 \hat{k}, b=2 \hat{i}-3 \hat{j}+4 \hat{k}$, then verify that $a \times b$ is perpendicular to both a and b.

- Watch Video Solution

4. If $|\vec{a}|=3,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=0$, then write the value of $|\vec{a} \times \vec{b}|$.

- Watch Video Solution

5. Find the component of the vector $\vec{b}=8 \hat{i}+\hat{j}$ in the direction of the vector $\vec{a}=\hat{i}+2 \hat{j}-2 \hat{k}$.

D Watch Video Solution

6. Write a vector normal to $(\hat{i}+\hat{k})$ and $(\hat{i}+\hat{j})$.

D Watch Video Solution

7. Find the area of the parallelogram whose diagonals are the vectors $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$?

- Watch Video Solution

8. Determine the value of m, for which the following vectors are orthogonal.
$(m+1) \hat{i}+m^{2} \hat{j}-m \hat{k},\left(m^{2}-m+1\right) \hat{i}-m \hat{j}+\hat{k}$

- Watch Video Solution

9. Find the value of λ such that the following vectors are coplanar:
$-\hat{i}+\lambda \hat{j}-\lambda \hat{k}, 2 \hat{i}+4 \hat{j}+5 \hat{k},-2 \hat{i}+4 \hat{j}-4 \hat{k}$.
10. For what value of λ, the vectors $\lambda \hat{i}+3 \hat{j}+\lambda \hat{k}$ and $\lambda \hat{i}-2 \hat{j}+\hat{k}$ are perpendicular to each others.

- Watch Video Solution

11. Find the scalar projection of the vector $\vec{a}=3 \hat{i}+6 \hat{j}+9 \hat{k}$ on $\vec{b}=2 \hat{i}+2 \hat{j}-\hat{k}$.

- Watch Video Solution

12. Determine μ, for which the vector $\vec{a}=\mu(6 \hat{i}+2 \hat{j}-3 \hat{k})$ will be of unit length.
13. Show that the vectors $2 \hat{i}+3 \hat{j}, 5 \hat{i}-5 \hat{k}$ and $6 \hat{j}+4 \hat{k}$ are coplanar.

- Watch Video Solution

14. If $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then draw the conclusion.

- Watch Video Solution

15. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq \overrightarrow{0}$, then prove that $\vec{a}+\vec{c}=m \vec{b}$, where m is a scalar

- Watch Video Solution

16. What is the angle between the vectors $2 \hat{i}-\hat{j}-\hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$?

- Watch Video Solution

17. Determine the area of the parallelogram whose sides are the vectors $2 \hat{i}+2 \hat{j}$ and $\hat{i}-\hat{k}$

- Watch Video Solution

18. Using vector method find the area of the triangle with vertices $(1,0,0)(0,1,0)$ and ($0,0,1$)

- Watch Video Solution

19. Write the angle between \vec{a} and \vec{c}, if $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{c}$.

D View Text Solution

20. What is $(\hat{i}-\hat{j}) \cdot(\hat{j}-\hat{i})$?

- Watch Video Solution

21. $(2 \hat{i}-4 \hat{j}) \cdot(\hat{i}+\hat{j}+\hat{k})=\ldots$.
A. -3
B. +2
C. -1
D. -2

- Watch Video Solution

22. If $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=\hat{i}+\hat{j}+2 \hat{k}, \vec{c}=2 \hat{i}-\hat{j}-2 \hat{k}$, then what is
A. $\vec{a} \perp \vec{b}$
B. $\vec{b} \perp \vec{c}$
C. $\vec{a} \perp \vec{c}$
D. no pair of vectors are perpendicular

Answer: C

- Watch Video Solution

23. Each question given below have four possible answers, out of which only one is correct. Choose the correct one.

$$
(-3, \lambda, 1) \perp(1,0,-3) \Rightarrow \lambda=
$$

A. 0
B. 1
C. impossible to find
D. any real number

Answer: C

D Watch Video Solution

24. Each question given below have four possible answers, out of which only one is correct. Choose the correct one.

A vector perpendicular to the vectors $\hat{i}+\hat{j}$ and $\hat{i}+\hat{k}$ is
A. $\hat{i}-\hat{j}-\hat{k}$
B. $\hat{j}-\hat{k}+\hat{i}$
C. $\hat{k}-\hat{j}-\hat{i}$
D. $\hat{j}+\hat{k}+\hat{i}$

Answer: A

D Watch Video Solution

25. Each question given below have four possible answers, out of which only one is correct. Choose the correct one.

If \widehat{a} and \hat{b} are unit vectors such that $\hat{a} \times \hat{b}$ is a unit vector, then the angle between \widehat{a} and \hat{b} is \qquad
A. of any measure
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer: C

- Watch Video Solution

26. $(-\vec{a}) \cdot \vec{b} \times(-\vec{c})=\ldots$
A. $\vec{a} \times \vec{b} \cdot \vec{c}$
B. $-\vec{a} \cdot(\vec{b} \times \vec{c})$
C. $\vec{a} \times \vec{c} \cdot \vec{b}$
D. $\vec{a} \cdot(\vec{c} \times \vec{b})$

Answer: A
27. For the non-zero vectors \vec{a}, \vec{b} and $\vec{c}, \vec{a} \cdot(\vec{b} \times \vec{c})=0$, if
A. $\vec{b} \perp \vec{c}$
B. $\vec{a} \perp \vec{b}$
C. $\vec{a}|\mid \vec{c}$
D. $\vec{a} \perp \vec{c}$

Answer: C

D View Text Solution
28. What is the projection of $\hat{i}+\hat{j}-\hat{k}$ upon the vector \hat{i} ?
29. If \widehat{a} is a unit vector and $(\vec{x}-\widehat{a}) \cdot(\vec{x}+\widehat{a})=8$, then find $|\vec{x}|$

- Watch Video Solution

30. If $|\vec{a}|=\sqrt{3},|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=3$, then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

31. Find the angle between the vectors \vec{a} and \vec{b}, if $|\vec{a} \times \vec{b}|=\sqrt{3},|\vec{a}|=2$ and $|\vec{b}|=1$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 32. } \begin{array}{l}
\text { Find } \\
\vec{a}=2 \hat{i} \cdot(\vec{b} \times \vec{c}) \text {, } \\
\vec{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k} \text { and } \vec{c}=3 \hat{i}+\hat{j}+2 \hat{k}
\end{array} .
\end{aligned}
$$

- Watch Video Solution

33. Show that the vectors \vec{a}, \vec{b} and \vec{c} are coplanar, if $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are coplanar.

D Watch Video Solution

34. Evaluate $[\hat{i} \hat{k} \hat{j}]+[\hat{i} \hat{j} \hat{k}]$.

D Watch Video Solution

1. Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b} \quad$ and $\quad \vec{a}-\vec{b}$, where $\quad \vec{a}=\hat{i}+\hat{j}+\hat{k} \quad$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

2. Prove that $(\vec{a} \times \vec{b})^{2}=a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}$.

D Watch Video Solution

3. Prove that for any three vectors \vec{a}, \vec{b} and $\vec{c},[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

(.) Watch Video Solution

4.

Show
$\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$.

- Watch Video Solution

5. Find the area of the triangle $A B C$ with vertices $A(1,2,4), B(3,1,-2)$ and $C(4,3,1)$ by vector method.

D Watch Video Solution

6. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude show that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b}, \vec{c}.
7. Prove that $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$.

D View Text Solution

8. Prove that the following vectors can never be coplanar for any real value of λ.
$(\lambda+1) \hat{i}+2 \hat{j}+\hat{k},-\hat{i}+\lambda \hat{j}+\hat{k}, \lambda \hat{i}+\hat{j}+3 \hat{k}$

D View Text Solution

9. Prove the following by vector method. An angle inscribed in a semi-circle is a right angle.
10. If \vec{a}, \vec{b} and \vec{c} are mutually perpendicular vectors, then prove that $[\vec{a} \cdot(\vec{b} \times \vec{c})]^{2}=a^{2} b^{2} c^{2}$.

D View Text Solution

11. Find a vector \vec{b} such that $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \cdot \vec{b}=3$, where $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{c}=\hat{j}-\hat{k}$.

- Watch Video Solution

12. Prove by vector method that in a
$\Delta A B C, c^{2}=a^{2}+b^{2}-2 a b \cos C$.
13. The diagonals of a parallelogram are given by $\vec{a}=2 \hat{i}-3 \hat{j}+5 \hat{k}$ and $\vec{b}=-2 \hat{i}+2 \hat{j}+2 \hat{k}$

Show that the parallelogram is a rhombus. Determine the area of the ehombus and the length of each side.

D View Text Solution

14. Resolve the vector $\vec{b}=\hat{i}+\hat{j}+\hat{k}$ into vectors parallel and perpendicular to the vector $\vec{a}=\hat{i}+\hat{j}$.

- Watch Video Solution

15. Prove that the following vectors are coplanar $-4 \hat{i}+4 \hat{j}+4 \hat{k}, 4 \hat{i}+5 \hat{j}+\hat{k}-\hat{j}-\hat{k}, 3 \hat{i}+9 \hat{j}+4 \hat{k}$.
16. If the magnitude of the difference of two unit vectors is $\sqrt{3}$ then find the magnitude of their sum.

- Watch Video Solution

17. Find the value of t, such that the following vectors are perpendicular to each other.

$$
\vec{c}=\hat{i}-4 \hat{j}+t \hat{k}, \vec{d}=6 \hat{i}-2 \hat{j}-3 \hat{k}
$$

- Watch Video Solution

18. Find the unit vector perpendicular to vectors $2 \hat{i}-\hat{j}+\hat{k}$ and $3 \hat{i}+2 \hat{j}-\hat{k}$.
19. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$

D Watch Video Solution

20. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, then show that $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$.

- View Text Solution

21. If $\vec{a}=3 \hat{i}-2 \hat{j}-2 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}$, then calculate
$(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})$.

D Watch Video Solution

22. If \vec{a}, \vec{b} and \vec{c} are three vectors, such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$,
$\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.

- Watch Video Solution

23. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$.

D Watch Video Solution

24. If $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}, \vec{b}=-\hat{i}+2 \hat{j}-4 \hat{k}, \vec{c}=\hat{i}+\hat{j}+\hat{k}$, then find $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$.

- Watch Video Solution

Topic 2 Practice Questions 6 Mark Questions

1. If $\vec{a}=2 \hat{i}+\hat{k}, \vec{b}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{c}=4 \hat{i}-3 \hat{j}+7 \hat{k}$, then find the vector \vec{r} which satisfies $\vec{r} \times \vec{b}=\vec{c} \vec{b}$ and $\vec{r} \cdot \vec{a}=0$.

D View Text Solution

2. If $\quad \vec{p}=\frac{1}{\lambda}(\vec{b} \times \vec{c}), \vec{q}=\frac{1}{\lambda}(\vec{c} \times \vec{a}) \quad$ and $\vec{r}=\frac{1}{\lambda}(\vec{a} \times \vec{b})$, where $\lambda=[\vec{a} \vec{b} \vec{c}] \neq 0$, then show that $(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{p}+\vec{q}+\vec{r})=3$

D View Text Solution
3.
$\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times \vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=0$ and hence prove that $\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a})$ and $\vec{c} \times(\vec{a} \times \vec{b})$ are coplanar.

D View Text Solution

4. If $\vec{a}=2 \hat{i}+\hat{j}, \vec{b}=-\hat{i}+2 \hat{k}$ and $\vec{c}=2 \hat{j}+\hat{k}$, then find $\vec{a} \times(\vec{b} \times \vec{c})$ and also verify the formula
$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$

D View Text Solution

5. Prove that by vector methord, in any
$\Delta A B C, \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

- Watch Video Solution

6. Obtain the volume of the parallelopiped whose sides are vectors

$$
\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \quad \vec{b}=\hat{i}+2 \hat{j}-\hat{k}
$$

$\vec{c}=3 \hat{i}-\hat{j}+2 \hat{k}$. Also find the vector $(\vec{a} \times \vec{b}) \times \vec{c}$.

- Watch Video Solution

7. Prove by vector method that the medians of a triangle are concurrent.

- Watch Video Solution

8. Prove the following by vector method. The diagonals of a rhombus are at right angles.

- Watch Video Solution

9. If $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k} \quad$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c}=18$.

D Watch Video Solution

10. Find the altitude of a parallelopiped dtermined by the
vectors

$$
\begin{aligned}
& \text { vectors } \vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-\hat{k} \quad \text { and } \\
& \vec{c}=\hat{i}+\hat{j}+3 \hat{k} \text {, if the base is taken to the parallelogram }
\end{aligned}
$$ determined by \vec{a} and \vec{b}.

- View Text Solution

11. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$.

If $c_{1}=1$ and $c_{2}=2$, then find c_{3}, which makes \vec{a}, \vec{b} and \vec{c} coplanar.

- Watch Video Solution

12. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$.

If $c_{2}=-1$ and $c_{3}=1$, then show that no value of c_{1} can make \vec{a}, \vec{b} and \vec{c} coplanar.

- Watch Video Solution

Topic Test 2

1. If $\vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{a}$ for all vectors \vec{a}, then
A. $\vec{a} \perp(\vec{b}-\vec{c})$
B. $\vec{b}-\vec{c}=\overrightarrow{0}$
C. $\vec{b} \neq \vec{c}$
D. $\vec{b}+\vec{c}=\overrightarrow{0}$

Answer: A

D Watch Video Solution

2. If \vec{a}, \vec{b} and \vec{c} are non - zero vectors, then $\vec{a} \times \vec{b}=\vec{a} \times \vec{c} \Leftrightarrow \ldots$
A. $\vec{a}=\vec{c}$
B. $\vec{a}|\mid(\vec{b}-\vec{c})$
C. $\vec{b}|\mid \vec{c}$
D. $\vec{b} \perp \vec{c}$

Answer: B

- Watch Video Solution

> 3. Find the angle between the vectors $\vec{a}=3 \hat{i}+2 \hat{j}-\hat{k}, \vec{b}=-2 \hat{i}-3 \hat{j}+\hat{k}$.

- Watch Video Solution

4. Find the projection of the vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$.
5. Find the projection of $\vec{b}+\vec{c}$ on \vec{a}, where $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$.

- Watch Video Solution

6. Show that each of the given three vectors is a unit vector.

$$
\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})
$$

- Watch Video Solution

7. Find $|\vec{x}|$, if for a unit vector $\widehat{a},(\vec{x}-\widehat{a}) \cdot(\vec{x}+\widehat{a})=12$.

D Watch Video Solution

8. If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$, then what can be concluded about \vec{b} ?

- Watch Video Solution

9. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $|\vec{a}|=5,|\vec{b}|=12,|\vec{c}|=13$ and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

10. Find the area of the triangle $A B C$ with vertices $A(1,2,4)$, $B(3,1,-2)$ and $C(4,3,1)$ by vector method.
11. Show that the vector area of the triangle whose vertices have position vectors $\vec{a}, \vec{b}, \vec{c}$, is $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})$.

- Watch Video Solution

12. In a $\triangle A B C$, prove by vector method $b^{2}=a^{2}+c^{2}-2 \mathrm{ac} \quad \cos B$.

D Watch Video Solution

13. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$.

- Watch Video Solution

14. Determine the area of parallelogram whose adjacent sides are the vector $(1,-3,1),(1,1,1)$

- Watch Video Solution

15. Prove the following by vector method. The parallelogram whose diagonals are equal is a rectangle.

- Watch Video Solution

16. Find the value of λ so that the vectors $\hat{i}-\hat{j}+\hat{k}, 2 \hat{i}+\hat{j}-\hat{k}$ and $\lambda \hat{i}-\hat{j}+\lambda \hat{k}$ are coplanar.
17. If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+c \hat{k}$ are coplanar, then prove that $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1$.

D Watch Video Solution

18. Prove that for any three vectors \vec{a}, \vec{b} and $\vec{c},[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

19. If $\vec{a}=\hat{i}+2 \hat{j}-2 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+3 \hat{j}-\hat{k}$, then find the value of $\vec{a} \times(\vec{b} \times \vec{c})$.

- Watch Video Solution

20. Find the value of $\hat{i} .(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{k} \times \hat{i})+\hat{k} .(\hat{i} \times \hat{j})$.

D Watch Video Solution

21. If $\widehat{a}, \hat{b}, \hat{c}$ are unit vectors and $\widehat{a} \times(\hat{b} \times \hat{c})=\frac{1}{2} \hat{b}$, then find the angles that \widehat{a} makes with \hat{b} and \hat{c} where \hat{b}, \hat{c} are not parallel.

- Watch Video Solution

Chapter Test 1 Mark Questions

1. If A, B and C are the vertices of a $\triangle A B C$, then what is the value of $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}$?
2. Find α, such that the vectors $(-2, \alpha, 1)$ and $(4,3,-2)$ are parallel.

- Watch Video Solution

3. Find the scalar and vector components of the vector with initial point $(2,1)$ and terminal point $(-5,7)$.

- Watch Video Solution

4. If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{c}=\hat{i}+3 \hat{j}-\hat{k}$ then find λ such that \vec{a} is perpendicular to $\lambda \cdot \vec{b}+\vec{c}$.

- Watch Video Solution

5. If $\vec{a}=(2,1), \vec{b}=(-1,0)$, then find $3 \vec{a}+2 \vec{b}$.

- Watch Video Solution

6. If $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$ then show that $|\vec{a}|=|\vec{b}|$.

D Watch Video Solution

7. Evaluate $(2 \vec{a}+3 \vec{b}) \cdot(5 \vec{a}+7 \vec{b})$.

- Watch Video Solution

8. If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$, then show that the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are perpendicular.
9. If $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$, then what is the angle between \vec{a} and \vec{b} ?

D Watch Video Solution

10. Find $[\vec{a} \vec{b} \vec{c}]$, if $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}-2 \hat{k}$.

(D) Watch Video Solution

Chapter Test 4 Mark Questions

1. Prove the following by vector method. In a triangle AOB, $m \angle A O B=90^{\circ}$. If P and Q are the points of trisection of AB ,
prove that
$O P^{2}+O Q^{2}=\frac{5}{9} A B^{2}$

- Watch Video Solution

2. The position vectors of the point A, B, C and D are $4 \hat{i}+3 \hat{j}-\hat{k}, 5 \hat{i}+2 \hat{j}+2 \hat{k}, 2 \hat{i}-2 \hat{j}-3 \hat{k}$ and $4 \hat{i}-4 \hat{j}+3 \hat{k}$, respectively. Show that $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are parallel.

D Watch Video Solution

3. Prove by vector method that the lines joining the mid points of consecutive sides of a quadrilateral is a parallelogram.
4. Vectors \vec{a}, \vec{b} and \vec{c} are such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$. Then, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

5. If $\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \neq \overrightarrow{0}$, then prove that $\vec{a}+\vec{b}=\lambda \vec{c}$, where λ is a scalar.

D Watch Video Solution

6. If the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}$ and $c \hat{i}+c \hat{j}+b \hat{k}$ are coplanar then show that $c^{2}=a b$
7. Find the area of a triangle having the points $A(1,1,1), B(1,2,3)$ and $C(2,3,1)$ as its vertices.

- Watch Video Solution

8. Prove that $|\vec{a}-\vec{b}| \geq|\vec{a}|-|\vec{b}|$.

D Watch Video Solution

9. Simplify $[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]$.

- Watch Video Solution

10. Let \vec{a}, \vec{b} and \vec{c} be three vectors of magnitude 1,1 and 2 respectively. If $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$, then find the acute
angle between a and c.

- Watch Video Solution

Chapter Test 6 Mark Questions

1. Find the vectors from the origin to the points of trisection the vector $\overrightarrow{P_{1} P_{2}}$ joining $P_{1}(-4,3)$ and $P_{-} 2(5,-12)$.

- Watch Video Solution

2. Prove the following by vector method. Measure of the angle
between two diagonals of a cube is $\cos ^{-1}\left(\frac{1}{3}\right)$
3. Prove by vector method that the medians of a triangle are concurrent.

- Watch Video Solution

4. Determine the angle between the vectors
$\hat{i}-3 \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

5. Determine the sine of the angle between the vectors
$5 \hat{i}-3 \hat{j}$ and $3 \hat{i}-2 \hat{k}$

- Watch Video Solution

6. If $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k} \quad$ and
$\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} \cdot \vec{c}=18$.

- Watch Video Solution

7. Express the vector $\vec{a}=5 \hat{i}-2 \hat{j}+5 \hat{k}$ as sum of two vectors such that one is parallel to vector $\vec{b}=3 \hat{i}+\hat{k}$ and other is perpendicular to \vec{b}.

- Watch Video Solution

8. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$ and each one of these is perpendicular to sum of other two find $|\vec{a}+\vec{b}+\vec{c}|$.
9. Prove that the four points with position vectors $2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c} \quad$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar.

- Watch Video Solution

