

MATHS

BOOKS - ARIHANT PRAKASHAN

VECTORS

Topic 1 Practice Questions 1 Mark Questions

1. Write the unit vectors in R^3 , which makes angles $45^{\,\circ}$ and $60^{\,\circ}$

with positive directions of X-axis and Y-axis, respectively.

C	View Text Solution

3. Write the value of α , if the vector $\overrightarrow{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$ and $\overrightarrow{b} = \alpha\hat{i} - \hat{j} + 2\hat{k}$ are parallel.

Watch Video Solution

4. If
$$\left| k \overrightarrow{a} \right|$$
 = 1`, then

A.
$$\overrightarrow{a} = \frac{1}{k}$$

B. $\overrightarrow{a} = \frac{1}{|k|}$
C. $k = \frac{1}{|\overrightarrow{a}|}$
D. $k = \pm \frac{1}{|\overrightarrow{a}|}$

Answer: D

5. Write the values of m and n for which the vectors $(m-1)\hat{i}+(n+2)\hat{j}+4\hat{k}$ and $(m+1)\hat{i}+(n-2)\hat{j}+8\hat{k}$ will be parallel.

6. How many directions a null vector has ?

Watch Video Solution

7. If the position vectors of the points A, B, C are $2\hat{i}+\hat{j}-\hat{k},3\hat{i}-2\hat{j}+\hat{k}$ and $\hat{i}+4\hat{j}-3\hat{k}$ respectively, then prove that A, B, C are collinear.

8. If A, B, C, D, E are the vertices of a regular pentagon, find the vector sum $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EA}$. Watch Video Solution 9. Write the unit vector along \overrightarrow{PQ} joining the points P(7, -4, 5) to Q(7, 1, 5). Watch Video Solution

10. What is the unit vector in the direction of the vector $3\hat{i}+4\hat{j}$

?

11. If
$$\overrightarrow{OP_1} = 4\hat{i} + 3\hat{j}$$
 and $\overrightarrow{OP_2} = 8\hat{j} - 5\hat{j}$, then what is $\overrightarrow{P_1P_2}$?

Watch Video Solution

12. If
$$\overrightarrow{a} = \hat{i} + 2\hat{j} + \hat{k}, \ \overrightarrow{b} = 2\hat{i} - 2\hat{j} + 2\hat{k}$$
 and

$$\overrightarrow{c} = \, - \, \hat{i} + 2 \hat{j} + \hat{k}$$
, then

A. \overrightarrow{a} and \overrightarrow{b} have the same directions

B. \overrightarrow{a} and \overrightarrow{c} have opposite directions

C. \overrightarrow{b} and \overrightarrow{c} have opposite directions

D. no pair of vectors have same directions

Answer: D

13. The direction cosines of the vectors \overrightarrow{PQ} where \overrightarrow{PQ} = (1, 0, -2)

and \overrightarrow{OQ} = (3, -2, 0) are

A. 2,-2,2

B. 4,-2,-2

C.
$$\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$

D. $\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}$

Answer: C

Watch Video Solution

14. If
$$\overrightarrow{a} = x\hat{i} + 2\hat{j} - z\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} - y\hat{j} + \hat{k}$ are two equal

vectors, then find the value of x + y + z.

15. Find the vector from origin to the mid-point of the vector $\overrightarrow{P_1P_2}$ joining the points P_1 (4,3) and P_2 (8, -5).

Topic 1 Practice Questions 4 Mark Questions

1. Prove that the vectors $2\hat{i}-\hat{j}+\hat{k},\,\hat{i}-3\hat{j}-5\hat{k},3\hat{i}-4\hat{j}-4\hat{k}$

are the sides of a right angled triangle.

2. The projection of a line segment \overline{OP} , through origin O, on the co-ordinate axes are 6, 2, 3. Find the length of the line segment OP and its direction cosines.

Watch Video Solution

3. Prove that

 $|a+b| \leq |a|+|b|$

State when equality will hold,

4. Prove that the lines joining the midpoints of consecutive sides of a quadrilateral form a parallelogram using vector method.

Watch Video Solution

5. ABCD is a parallelogram. Using vector method prove that line joing A and the mid -point of BC intersects the diagonal BD in the ratio 1:2.

View Text Solution

6. If $\overrightarrow{a} = (2, -2, 1)$, $\overrightarrow{b} = (2, 3, 6)$ and $\overrightarrow{c} = (-1, 0, 2)$, Find the magnitude and direction of $\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}$.

7. Show that the point (3, -2, 4), (1, 1, 1) and (-1, 4, -2) are collinear.

8. Show that the vectors
$$\overrightarrow{a} = 3\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} - 3\hat{j} + 5\hat{k}$$

and $\overrightarrow{c}=2\hat{i}+\hat{j}-4\hat{k}$ form a right angled triangle.

Watch Video Solution

9. If
$$\overrightarrow{PO} + \overrightarrow{OQ} = \overrightarrow{QO} + \overrightarrow{OR}$$
, the show that the point P,Q and R

are collinear.

View Text Solution

10. If the sum of two unit vectors is a unit vector, show that the

magnitude of their difference is $\sqrt{3}$.

11. A vector \overrightarrow{r} is inclined at equal angles to the three axes. If the magnitude of \overrightarrow{r} is $2\sqrt{3}$ units, then find the value of \overrightarrow{r} .

Watch Video Solution

12. Let
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \ \overrightarrow{b} = 4\hat{i} - 2\hat{j} + 3\hat{k}$$
 and

 $\overrightarrow{c} = \hat{i} - 2\hat{j} + \hat{k}$ and find a vector of magnitude 6 units which is parallel to the vector $2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$.

1. Compute the magnitude of the following vectors

$$ec{a} = \hat{i} + \hat{j} + \hat{k}, \, ec{b} = 2\hat{i} - 7\hat{j} - 3\hat{k}$$
and $ec{c} = rac{1}{\sqrt{3}}\hat{i} + rac{1}{\sqrt{3}}\hat{j} - rac{1}{\sqrt{3}}\hat{k}.$

Watch Video Solution

2. Find the value of x and y, so that the vectors $2\hat{i} + 3\hat{j}$ and $x\hat{i} + y\hat{j}$ are equal.

Watch Video Solution

3. find the unit vector in the direction of 'PQ' where P and Q are

the points (1,2,3) and (4,5,6).

4. Find the unit vector in the direction of the vector $r_1 - r_2$,

where
$$r_1=\hat{i}+2\hat{j}+\hat{k}$$
 and $r_2=3\hat{i}+\hat{j}-5\hat{k}.$

Watch Video Solution

5. Show that the vectors $2\hat{i}-3\hat{j}+4\hat{k}$ and $-4\hat{i}+6\hat{j}-8\hat{k}$ are

collinear.

Watch Video Solution

6. If
$$\overrightarrow{a} + \overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$$
 and $\overrightarrow{a} - \overrightarrow{b} = 2\hat{i} + 4\hat{j} + 2\hat{k}$, then find the scalar components of \overrightarrow{a} and \overrightarrow{b}

7. Prove that the vectors $2\hat{i}-\hat{j}+\hat{k},\,\hat{i}-3\hat{j}-5\hat{k},3\hat{i}-4\hat{j}-4\hat{k}$

are the sides of a right angled triangle.

8. Find the unit vector parallel to the sum of the vectors $ec{a}=2\hat{i}+4\hat{j}-5\hat{k}$ and $ec{b}=\hat{i}+2\hat{j}+3\hat{k}$. Also, find its

direction cosines.

Watch Video Solution

9. If the vectors $3\hat{i} + 2\hat{j} - \hat{k}$ and $6\hat{i} - 4p\hat{j} + q\hat{k}$ are parallel, then find the values of p and q.

10. If the points with position vector $10\hat{i}+3\hat{j}, 12\hat{i}-\hat{j}$ and $a\hat{i}+11\hat{j}$ are collinear, find the value of a.

12. Find the vectors from the origin to the points of trisection the vector $\overrightarrow{P_1P_2}$ joining $P_1(-4,3)$ and P_2(5,-12).

13. If $\overrightarrow{a} = (2, -2, 1)$, $\overrightarrow{b} = (2, 3, 6)$ and $\overrightarrow{c} = (-1, 0, 2)$, Find the magnitude and direction of $\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}$.

14. Find the vectors from the origin to the intersection of the medians of the triangle whose vertices are A(5,2,1), B(-4,7,0) and C(5, -3,5)

15. Let the position vectors of A and B be $3\hat{i} - \hat{j} + \hat{k}$ and $-\hat{i} + 2\hat{j} + 3\hat{k}$. Find the vector \overrightarrow{AB} and its magnitude Also, determine the unit vector in the direction of \overrightarrow{AB} .

16. ABCD is a quadrilateral. If M and N are the mid points of the

sides \overrightarrow{BD} and \overrightarrow{AC} , respectively. Show that $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD} = 4\overrightarrow{NM}$

Watch Video Solution

Topic 2 Practice Questions 1 Mark Questions

$$\textbf{1. If } \left(\overrightarrow{a} \times \overrightarrow{b} \right)^2 + \left(\overrightarrow{a} \cdot \overrightarrow{b} \right)^2 = 144 \text{, write the value of } ab.$$

Watch Video Solution

2. It the vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} form the sides \overrightarrow{BC} , \overrightarrow{CA} and \overrightarrow{AB} respectively of a triangle ABC, then write the value of

3. If $a=3\hat{i}+\hat{j}+2\hat{k}, b=2\hat{i}-3\hat{j}+4\hat{k}$, then verify that a imes b

is perpendicular to both a and b.

4. If $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 0$, then write the value of $\left|\overrightarrow{a} \times \overrightarrow{b}\right|$.

Watch Video Solution

5. Find the component of the vector $\overrightarrow{b} = 8\hat{i} + \hat{j}$ in the direction of the vector $\overrightarrow{a} = \hat{i} + 2\hat{j} - 2\hat{k}$.

Watch Video Solution

6. Write a vector normal to
$$\left(\hat{i}+\hat{k}
ight)$$
 and $\left(\hat{i}+\hat{j}
ight)$.

7. Find the area of the parallelogram whose diagonals are the vectors $3\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+4\hat{k}$?

8. Determine the value of m, for which the following vectors are orthogonal.

$$(m+1)\hat{i}+m^2\hat{j}-m\hat{k},ig(m^2-m+1ig)\hat{i}-m\hat{j}+\hat{k}$$

Watch Video Solution

9. Find the value of λ such that the following vectors are coplanar:

$$-\hat{i} + \lambda \hat{j} - \lambda \hat{k}, 2\hat{i} + 4\hat{j} + 5\hat{k}, \ -2\hat{i} + 4\hat{j} - 4\hat{k}.$$

10. For what value of λ , the vectors $\lambda \hat{i} + 3\hat{j} + \lambda \hat{k}$ and $\lambda \hat{i} - 2\hat{j} + \hat{k}$ are perpendicular to each others.

11. Find the scalar projection of the vector $\overrightarrow{a}=3\hat{i}+6\hat{j}+9\hat{k}$ on $\overrightarrow{b}=2\hat{i}+2\hat{j}-\hat{k}.$

Watch Video Solution

12. Determine μ , for which the vector $\overrightarrow{a} = \mu \Big(6\hat{i} + 2\hat{j} - 3\hat{k} \Big)$

will be of unit length.

13. Show that the vectors $2\hat{i}+3\hat{j},5\hat{i}-5\hat{k}$ and $6\hat{j}+4\hat{k}$ are

coplanar.

14. If
$$\overrightarrow{a}$$
. $\overrightarrow{b} = 0$ and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$, then draw the conclusion.

Watch Video Solution

15. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} \neq \overrightarrow{0}$$
, then prove that $\overrightarrow{a} + \overrightarrow{c} = \overrightarrow{m} \overrightarrow{b}$, where m is a scalar

16. What is the angle between the vectors $2\hat{i}-\hat{j}-\hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$?

vectors $2\hat{i}+2\hat{j}$ and $\hat{i}-\hat{k}$

Watch Video Solution

18. Using vector method find the area of the triangle with

vertices (1, 0, 0) (0, 1, 0) and (0, 0, 1)

19. Write the angle between
$$\overrightarrow{a}$$
 and \overrightarrow{c} , if $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \frac{1}{2}\overrightarrow{c}$.

View Text Solution

20. What is
$$\left(\hat{i} - \hat{j}
ight) \cdot \left(\hat{j} - \hat{i}
ight)$$
 ?

D Watch Video Solution

21.
$$\left(2\hat{i}-4\hat{j}
ight)\cdot\left(\hat{i}+\hat{j}+\hat{k}
ight)=\ \ldots$$

- $\mathsf{A.}-3$
- $\mathsf{B.}+2$
- $\mathsf{C}.-1$

 $\mathsf{D.}-2$

Answer: D

22. If
$$\overrightarrow{a} = \hat{i} + 2\hat{j} - \hat{k}, \ \overrightarrow{b} = \hat{i} + \hat{j} + 2\hat{k}, \ \overrightarrow{c} = 2\hat{i} - \hat{j} - 2\hat{k},$$

then what is

 $\begin{array}{l} \mathsf{A}.\overrightarrow{a}\perp\overrightarrow{b}\\\\ \mathsf{B}.\overrightarrow{b}\perp\overrightarrow{c}\\\\ \mathsf{C}.\overrightarrow{a}\perp\overrightarrow{c}\end{array}$

D. no pair of vectors are perpendicular

Answer: C

23. Each question given below have four possible answers, out

of which only one is correct. Choose the correct one.

 $(\,-3,\lambda,1)\perp(1,0,\,-3)\Rightarrow\lambda$ =

A. 0

B. 1

C. impossible to find

D. any real number

Answer: C

Watch Video Solution

24. Each question given below have four possible answers, out of which only one is correct. Choose the correct one. A vector perpendicular to the vectors $\hat{i} + \hat{j}$ and $\hat{i} + \hat{k}$ is

A.
$$\hat{i}-\hat{j}-\hat{k}$$

B. $\hat{j}-\hat{k}+\hat{i}$
C. $\hat{k}-\hat{j}-\hat{i}$
D. $\hat{i}+\hat{k}+\hat{i}$

Answer: A

25. Each question given below have four possible answers, out of which only one is correct. Choose the correct one. If \hat{a} and \hat{b} are unit vectors such that $\hat{a} \times \hat{b}$ is a unit vector, then the angle between \hat{a} and \hat{b} is

A. of any measure

 $\mathsf{B}.\,\frac{\pi}{4}$

$$\mathsf{C}.\,\frac{\pi}{2}$$

D. π

Answer: C

$$26. \left(-\overrightarrow{a} \right) \cdot \overrightarrow{b} \times \left(-\overrightarrow{c} \right) = \dots$$

$$A. \overrightarrow{a} \times \overrightarrow{b} \cdot \overrightarrow{c}$$

$$B. -\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c} \right)$$

$$C. \overrightarrow{a} \times \overrightarrow{c} \cdot \overrightarrow{b}$$

$$D. \overrightarrow{a} \cdot \left(\overrightarrow{c} \times \overrightarrow{b} \right)$$

Answer: A

27. For the non-zero vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , $\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right) = 0$

, if

Answer: C

View Text Solution

28. What is the projection of $\hat{i}+\hat{j}-\hat{k}$ upon the vector \hat{i} ?

29. If \widehat{a} is a unit vector and $\left(\overrightarrow{x} - \widehat{a}\right)$. $\left(\overrightarrow{x} + \widehat{a}\right) = 8$, then find

Watch Video Solution

 $\left| \overrightarrow{x} \right|$

30. If
$$\left|\overrightarrow{a}\right| = \sqrt{3}$$
, $\left|\overrightarrow{b}\right| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$, then find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

31. Find the angle between the vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , if $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = \sqrt{3}, \left|\overrightarrow{a}\right| = 2$ and $\left|\overrightarrow{b}\right| = 1$.

32. Find
$$\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right)$$
, if

 $\overrightarrow{a}=2\hat{i}+\hat{j}+3\hat{k},\ \dot{b}=-\hat{i}+2\hat{j}+\hat{k}$ and $\overrightarrow{c}=3\hat{i}+\hat{j}+2\hat{k}.$

Watch Video Solution

33. Show that the vectors
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} are coplanar, if $\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}$ and $\overrightarrow{c} + \overrightarrow{a}$ are coplanar.

Watch Video Solution

34. Evaluate
$$\left[\hat{i}\hat{k}\hat{j}
ight]+\left[\hat{i}\hat{j}\hat{k}
ight].$$

Watch Video Solution

Topic 2 Practice Questions 4 Mark Questions

1. Find a unit vector perpendicular to each of the vectors
$$\overrightarrow{a} + \overrightarrow{b}$$
 and $\overrightarrow{a} - \overrightarrow{b}$, where $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ and
 $\overrightarrow{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.

Watch Video Solution

2. Prove that
$$\left(\overrightarrow{a}\times\overrightarrow{b}
ight)^2=a^2b^2-\left(\overrightarrow{a}.\overrightarrow{b}
ight)^2.$$

Watch Video Solution

3. Prove that for any three vectors
$$\overrightarrow{a}$$
, \overrightarrow{b} and \overrightarrow{c} , $\left[\overrightarrow{a} + \overrightarrow{b}\overrightarrow{b} + \overrightarrow{c}\overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$

 \rightarrow

4. Show that
$$\hat{i} \times \left(\overrightarrow{a} \times \hat{i}\right) + \hat{j} \times \left(\overrightarrow{a} \times \hat{j}\right) + \hat{k} \times \left(\overrightarrow{a} \times \hat{k}\right) = 2\overrightarrow{a}$$
. Watch Video Solution

5. Find the area of the triangle ABC with vertices A(1,2,4), B(3,1,-2)

and C(4,3,1) by vector method.

Watch Video Solution

6. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitude show that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} .

7. Prove that
$$\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b} & \overrightarrow{b} \\ \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{c} \\ \overrightarrow{c} & \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$$
.
View Text Solution

8. Prove that the following vectors can never be coplanar for any real value of λ .

$$(\lambda+1)\hat{i}+2\hat{j}+\hat{k},\;-\hat{i}+\lambda\hat{j}+\hat{k},\lambda\hat{i}+\hat{j}+3\hat{k}$$

View Text Solution

9. Prove the following by vector method. An angle inscribed in a

semi-circle is a right angle.

10. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are mutually perpendicular vectors, then prove that $\left[\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right)\right]^2 = a^2 b^2 c^2$.

View Text Solution

11. Find a vector
$$\overrightarrow{b}$$
 such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$ and $\overrightarrow{a} . \overrightarrow{b} = 3$,
where $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \ \overrightarrow{c} = \hat{j} - \hat{k}$.

Watch Video Solution

12. Prove by vector method that in a
$$\Delta ABC, \, c^2 = a^2 + b^2 - 2ab\cos C.$$

13. The diagonals of a parallelogram are given by $ec{a}=2\hat{i}-3\hat{j}+5\hat{k}$ and $ec{b}=-2\hat{i}+2\hat{j}+2\hat{k}$

Show that the parallelogram is a rhombus. Determine the area of the ehombus and the length of each side.

View Text Solution

14. Resolve the vector $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$ into vectors parallel and perpendicular to the vector $\overrightarrow{a} = \hat{i} + \hat{j}$.

Watch Video Solution

15. Prove that the following vectors are coplanar $-4\hat{i}+4\hat{j}+4\hat{k},4\hat{i}+5\hat{j}+\hat{k}-\hat{j}-\hat{k},3\hat{i}+9\hat{j}+4\hat{k}.$

16. If the magnitude of the difference of two unit vectors is $\sqrt{3}$

then find the magnitude of their sum.

17. Find the value of t, such that the following vectors are perpendicular to each other.

$$\overrightarrow{c} = \hat{i} - 4\hat{j} + t\hat{k}, \overrightarrow{d} = 6\hat{i} - 2\hat{j} - 3\hat{k}$$

Watch Video Solution

18. Find the unit vector perpendicular to the vectors $2\hat{i} - \hat{j} + \hat{k}$

and $3\hat{i}+2\hat{j}-\hat{k}.$

19. Find
$$\left| \overrightarrow{a} \right|$$
 and $\left| \overrightarrow{b} \right|$, if $\left(\overrightarrow{a} + \overrightarrow{b} \right) \cdot \left(\overrightarrow{a} - \overrightarrow{b} \right) = 8$ and $\left| \overrightarrow{a} \right| = 8 \left| \overrightarrow{b} \right|$

Watch Video Solution

20. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$$
 and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$, then show that $\overrightarrow{a} - \overrightarrow{d}$ is parallel to $\overrightarrow{b} - \overrightarrow{c}$.

View Text Solution

21. If
$$\overrightarrow{a} = 3\hat{i} - 2\hat{j} - 2\hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} + \hat{k}$, then calculate $\left(\overrightarrow{a} + \overrightarrow{b}\right) imes \left(\overrightarrow{a} - \overrightarrow{b}\right)$.

22. If $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are three vectors, such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, then prove that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$.

Watch Video Solution

23. Show that
$$\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{a} + \overrightarrow{b}\right) = 2\left(\overrightarrow{a} \times \overrightarrow{b}\right).$$

Watch Video Solution

24. If
$$\overrightarrow{a} = 2\hat{i} + \hat{j} - \hat{k}$$
, $\overrightarrow{b} = -\hat{i} + 2\hat{j} - 4\hat{k}$, $\overrightarrow{c} = \hat{i} + \hat{j} + \hat{k}$,
then find $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \left(\overrightarrow{a} \times \overrightarrow{c}\right)$.

1. If
$$\overrightarrow{a} = 2\hat{i} + \hat{k}$$
, $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{c} = 4\hat{i} - 3\hat{j} + 7\hat{k}$, then
find the vector \overrightarrow{r} which satisfies $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{c} \overrightarrow{b}$ and
 $\overrightarrow{r} \cdot \overrightarrow{a} = 0$.

View Text Solution

2. If
$$\overrightarrow{p} = \frac{1}{\lambda} \left(\overrightarrow{b} \times \overrightarrow{c} \right), \overrightarrow{q} = \frac{1}{\lambda} \left(\overrightarrow{c} \times \overrightarrow{a} \right)$$
 and $\overrightarrow{r} = \frac{1}{\lambda} \left(\overrightarrow{a} \times \overrightarrow{b} \right)$, where $\lambda = \left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right] \neq 0$, then show that $\left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right) \cdot \left(\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r} \right) = 3$.

View Text Solution

3. Prove that

$$\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) + \overrightarrow{b} \times \overrightarrow{b} \times \left(\overrightarrow{c} \times \overrightarrow{a}\right) + \overrightarrow{c} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right) = 0$$

and hence prove that $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right), \overrightarrow{b} \times \left(\overrightarrow{c} \times \overrightarrow{a}\right)$ and
 $\overrightarrow{c} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)$ are coplanar.

View Text Solution

4. If
$$\overrightarrow{a} = 2\hat{i} + \hat{j}$$
, $\overrightarrow{b} = -\hat{i} + 2\hat{k}$ and $\overrightarrow{c} = 2\hat{j} + \hat{k}$, then find
 $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ and also verify the formula
 $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right)\overrightarrow{b} - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)\overrightarrow{c}$

View Text Solution

5. Prove that by vector methord, in any ΔABC , $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.

7. Prove by vector method that the medians of a triangle are concurrent.

8. Prove the following by vector method. The diagonals of a

rhombus are at right angles.

9. If
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}, \ \overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$$
 and

 $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \overrightarrow{p} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{p} . $\overrightarrow{c} = 18$.

10. Find the altitude of a parallelopiped dtermined by the vectors $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \overrightarrow{b} = 2\hat{i} + 4\hat{j} - \hat{k}$ and $\overrightarrow{c} = \hat{i} + \hat{j} + 3\hat{k}$, if the base is taken to the parallelogram determined by \overrightarrow{a} and \overrightarrow{b} .

View Text Solution

11. Let $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i}$ and $\overrightarrow{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. If $c_1 = 1$ and $c_2 = 2$, then find c_3 , which makes \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} coplanar.

Watch Video Solution

12. Let
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \overrightarrow{b} = \hat{i}$$
 and $\overrightarrow{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}.$

If $c_2=-1$ and $c_3=1$, then show that no value of c_1 can make $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} coplanar.

Watch Video Solution

Topic Test 2

1. If
$$\overrightarrow{a}\cdot\overrightarrow{b}=\overrightarrow{c}\cdot\overrightarrow{a}$$
 for all vectors \overrightarrow{a} , then

Answer: A

2. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} are non - zero vectors, then
 $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c} \Leftrightarrow \dots$
A. $\overrightarrow{a} = \overrightarrow{c}$
B. $\overrightarrow{a} \mid \mid \left(\overrightarrow{b} - \overrightarrow{c}\right)$
C. $\overrightarrow{b} \mid \mid \overrightarrow{c}$

 $\overrightarrow{\mathsf{D}} \stackrel{\rightarrow}{b} \perp \stackrel{\rightarrow}{c}$

Answer: B

5. Find the projection of $\overrightarrow{b} + \overrightarrow{c}$ on \overrightarrow{a} , where $\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$.

Watch Video Solution

6. Show that each of the given three vectors is a unit vector.

$$rac{1}{7} \Big(2 \hat{i} + 3 \hat{j} + 6 \hat{k} \Big), rac{1}{7} \Big(3 \hat{i} - 6 \hat{j} + 2 \hat{k} \Big), rac{1}{7} \Big(6 \hat{i} + 2 \hat{j} - 3 \hat{k} \Big)$$

Watch Video Solution

7. Find
$$\left|\overrightarrow{x}\right|$$
, if for a unit vector $\widehat{a}, \left(\overrightarrow{x} - \widehat{a}\right) \cdot \left(\overrightarrow{x} + \widehat{a}\right) = 12.$

8. If \overrightarrow{a} . $\overrightarrow{a} = 0$ and \overrightarrow{a} . $\overrightarrow{b} = 0$, then what can be concluded about \overrightarrow{b} ?

Watch Video Solution

9. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors such that $\left|\overrightarrow{a}\right| = 5$, $\left|\overrightarrow{b}\right| = 12$, $\left|\overrightarrow{c}\right| = 13$ and $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, then find the value of \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} + \overrightarrow{c}$. \overrightarrow{a} .

Watch Video Solution

10. Find the area of the triangle ABC with vertices A(1,2,4), B(3,1,-2) and C(4,3,1) by vector method.

11. Show that the vector area of the triangle whose vertices have

position vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
, is
 $\frac{1}{2} \left(\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \right).$

Watch Video Solution

12. In a
$$\Delta ABC$$
, prove by vector method $b^2 = a^2 + c^2 - 2 {
m ac} \cos B.$

Watch Video Solution

13. Show that
$$\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{a} + \overrightarrow{b}\right) = 2\left(\overrightarrow{a} \times \overrightarrow{b}\right).$$

14. Determine the area of parallelogram whose adjacent sides

are the vector (1, -3, 1), (1,1,1)

15. Prove the following by vector method. The parallelogram whose diagonals are equal is a rectangle.

Watch Video Solution

16. Find the value of λ so that the vectors $\hat{i} - \hat{j} + \hat{k}, 2\hat{i} + \hat{j} - \hat{k}$

and $\lambda \hat{i} - \hat{j} + \lambda \hat{k}$ are coplanar.

17. If the vectors $a\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + b\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + c\hat{k}$ are coplanar, then prove that $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$.

Watch Video Solution

18. Prove that for any three vectors
$$\overrightarrow{a}, \overrightarrow{b}$$
 and $\overrightarrow{c}, \left[\overrightarrow{a} + \overrightarrow{b}\overrightarrow{b} + \overrightarrow{c}\overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$

Watch Video Solution

19. If
$$\overrightarrow{a} = \hat{i} + 2\hat{j} - 2\hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} + 3\hat{j} - \hat{k}$, then find the value of $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$.

20. Find the value of
$$\hat{i}$$
. $\left(\hat{j} imes \hat{k}\right) + \hat{j}$. $\left(\hat{k} imes \hat{i}\right) + \hat{k}$. $\left(\hat{i} imes \hat{j}\right)$.

Watch Video Solution

21. If $\hat{a}, \hat{b}, \hat{c}$ are unit vectors and $\hat{a} \times (\hat{b} \times \hat{c}) = \frac{1}{2}\hat{b}$, then find the angles that \hat{a} makes with \hat{b} and \hat{c} where \hat{b}, \hat{c} are not parallel.

Watch Video Solution

Chapter Test 1 Mark Questions

1. If A, B and C are the vertices of a $\triangle ABC$, then what is the value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$?

2. Find lpha, such that the vectors $(\,-2,\,lpha,\,1)$ and $(4,\,3,\,-2)$ are

parallel.

• Watch Video Solution
3. Find the scalar and vector components of the vector with
initial point (2,1) and terminal point
$$(-5, 7)$$
.

Watch Video Solution

4. If
$$\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$$
, $\overrightarrow{b} = \hat{i} + \hat{j} - 2\hat{k}$ and $\overrightarrow{c} = \hat{i} + 3\hat{j} - \hat{k}$

then find λ such that \overrightarrow{a} is perpendicular to $\lambda \cdot \overrightarrow{b} + \overrightarrow{c}$.

5. If
$$\overrightarrow{a} = (2,1), \ \overrightarrow{b} = (-1,0)$$
, then find $3\overrightarrow{a} + 2\overrightarrow{b}$.

Watch Video Solution

6. If
$$\left(\overrightarrow{a} + \overrightarrow{b}\right) \cdot \left(\overrightarrow{a} - \overrightarrow{b}\right) = 0$$
 then show that $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right|$.

Watch Video Solution

7. Evaluate
$$\left(2\overrightarrow{a}+3\overrightarrow{b}\right)\cdot\left(5\overrightarrow{a}+7\overrightarrow{b}\right)$$
.

Watch Video Solution

8. If $\overrightarrow{a} = 5\hat{i} - \hat{j} - 3\hat{k}$ and $\overrightarrow{b} = \hat{i} + 3\hat{j} - 5\hat{k}$, then show that the vectors $\left(\overrightarrow{a} + \overrightarrow{b}\right)$ and $\left(\overrightarrow{a} - \overrightarrow{b}\right)$ are perpendicular.

9. If
$$\left| \overrightarrow{a} \cdot \overrightarrow{b} \right| = \left| \overrightarrow{a} \times \overrightarrow{b} \right|$$
, then what is the angle between \overrightarrow{a} and \overrightarrow{b} ?

Watch Video Solution

10. Find
$$\begin{bmatrix} \overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c} \end{bmatrix}$$
, if $\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = 2\hat{i} - 3\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j} - 2\hat{k}$.

Watch Video Solution

Chapter Test 4 Mark Questions

1. Prove the following by vector method. In a triangle AOB, $m \angle AOB = 90^{\circ}$. If P and Q are the points of trisection of AB, prove that

$$OP^2 + OQ^2 = \frac{5}{9}AB^2$$

Watch Video Solution

2. The position vectors of the point A,B,C and D are $4\hat{i} + 3\hat{j} - \hat{k}, 5\hat{i} + 2\hat{j} + 2\hat{k}, 2\hat{i} - 2\hat{j} - 3\hat{k}$ and $4\hat{i} - 4\hat{j} + 3\hat{k}$, respectively. Show that \overrightarrow{AB} and \overrightarrow{CD} are parallel.

3. Prove by vector method that the lines joining the mid points

of consecutive sides of a quadrilateral is a parallelogram.

4. Vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ and $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 5$ and $\left|\overrightarrow{c}\right| = 7$. Then, find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

5. If
$$\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a} \neq \overrightarrow{0}$$
, then prove that $\overrightarrow{a} + \overrightarrow{b} = \lambda \overrightarrow{c}$,

where λ is a scalar.

Watch Video Solution

6. If the vectors $a\hat{i}+a\hat{j}+c\hat{k},\,\hat{i}+\hat{k}$ and $c\hat{i}+c\hat{j}+b\hat{k}$ are coplanar then show that $c^2=ab$

7. Find the area of a triangle having the points A(1,1,1), B(1,2,3)

and C(2,3,1) as its vertices.

Watch Video Solution

8. Prove that
$$\left| \overrightarrow{a} - \overrightarrow{b} \right| \geq \left| \overrightarrow{a} \right| - \left| \overrightarrow{b} \right|$$
.

Watch Video Solution

9. Simplify
$$\begin{bmatrix} \overrightarrow{a} & -\overrightarrow{b} & \overrightarrow{b} & -\overrightarrow{c} & \overrightarrow{c} & -\overrightarrow{a} \end{bmatrix}$$
.

Watch Video Solution

10. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors of magnitude 1,1 and 2 respectively. If $\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}$, then find the acute


```
between two diagonals of a cube is \cos^{-1}\left(\frac{1}{3}\right)
```

3. Prove by vector method that the medians of a triangle are

concurrent.

6. If
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}, \ \overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$$
 and

 $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \overrightarrow{p} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{p} . $\overrightarrow{c} = 18$.

Watch Video Solution

7. Express the vector $\overrightarrow{a} = 5\hat{i} - 2\hat{j} + 5\hat{k}$ as sum of two vectors such that one is parallel to vector $\overrightarrow{b} = 3\hat{i} + \hat{k}$ and other is perpendicular to \overrightarrow{b} .

Watch Video Solution

8. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors such that $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 4$ and $\left|\overrightarrow{c}\right| = 5$ and each one of these is perpendicular to sum of other two find $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$.

9. Prove that the four points with position vectors $2\overrightarrow{a} + 3\overrightarrow{b} - \overrightarrow{c}, \overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}, 3\overrightarrow{a} + 4\overrightarrow{b} - 2\overrightarrow{c}$ and $\overrightarrow{a} - 6\overrightarrow{b} + 6\overrightarrow{c}$ are coplanar.