©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT PRAKASHAN

VERY SIMILAR TEST 10

Section A 10 Marks

1. Show that $f(x)=\frac{\log x}{x}$ has minimum value at $\mathrm{x}=\mathrm{e}$

(Watch Video Solution

2. Evaluate $\int_{2}^{4} \frac{x}{x^{2}+1} d x$

- Watch Video Solution

3. Write the order of the differential equation whose solution is given by $\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)$

D Watch Video Solution

4. Find the magnitude of \vec{a} given by
$\vec{a}=(\hat{i}+3 \hat{j}-2 \hat{k}) \times(-\hat{i}+3 \hat{k})$.

D Watch Video Solution

5. Find the distance of the point $(2,1,0)$ from the plane
$2 x+y+2 z+5=0$.
6. Show that the function $f: N \rightarrow N$ given by $f(x)=2 x$, is one-one but not onto.

- Watch Video Solution

7. If $\cos ^{-1} x+\cos ^{-1} y=\frac{\pi}{4}$, find the value of $\sin ^{-1} x+\sin ^{-1} y$.

- Watch Video Solution

8. Show that $\left|\begin{array}{lll}b-c & c-a & a-b \\ c-a & a-b & b-c \\ a-b & b-c & c-a\end{array}\right|=0$.
9. if $P(A)=0.4, P(B)=P, P(A \cup B)=0.6$ and A and B are given to be independent events, find the value of P

- Watch Video Solution

10. Answer all questions
(j) A function $f(x)$ is defined as
$f(x)=\left\{\begin{array}{ll}\frac{x^{2}-x-6}{x-3}, & \text { if } x \neq 3 \\ 5, & \text { if } x=3\end{array}\right.$ Show that $f(x)$ is
continuous at $x=3$.
11. Show that $f(x)=\frac{\log x}{x}$ has minimum value at $\mathrm{x}=\mathrm{e}$

(D) Watch Video Solution

12. Evaluate $\int_{2}^{4} \frac{x}{x^{2}+1} d x$

D Watch Video Solution

13. Write the order of the differential equation whose solution is given by $\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)$
14. Find the magnitude of \vec{a} given by $\vec{a}=(\hat{i}+3 \hat{j}-2 \hat{k}) \times(-\hat{i}+3 \hat{k})$.

- Watch Video Solution

15. Find the distance of the point $(2,1,0)$ from the plane
$2 x+y+2 z+5=0$.

- Watch Video Solution

16. Show that the function $f: N \rightarrow N$ given by $f(x)=2 x$, is one-one but not onto.
17. If $\cos ^{-1} x+\cos ^{-1} y=\frac{\pi}{4}$, find the value of $\sin ^{-1} x+\sin ^{-1} y$.

- Watch Video Solution

18. Show that $\left|\begin{array}{lll}b-c & c-a & a-b \\ c-a & a-b & b-c \\ a-b & b-c & c-a\end{array}\right|=0$.

- Watch Video Solution

19. if $P(A)=0.4, P(B)=P, P(A \cup B)=0.6$ and A and
B are given to be independent events, find the value of P

- Watch Video Solution

20. Answer all questions
(j) A function $f(x)$ is defined as
$f(x)= \begin{cases}\frac{x^{2}-x-6}{x-3}, & \text { if } x \neq 3 \\ 5, & \text { if } x=3\end{cases}$
Show that $f(x)$ is
continuous at $x=3$.

- Watch Video Solution

Section B 60 Marks

1. Prove that $\left(\cos ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}\right)=\sin ^{-1}\left(\frac{63}{65}\right)$
2. Answer any three questions
(b) A house wife wishes to mix together two kinds of food X and Y, in such a way that the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and 8 units of vitamin C.

The vitamin contents of 1 kg of food are given below

1 kg of food X costs Rs. 6 and 1 kg of food Y costs Rs. 10.
Find the least cost of the mixture will produce the diet.
3. Answer any three questions
(c) Show that $f:[-1,1] \rightarrow R$, given by $f(x)=\frac{x}{x+2}$ is one-one, find the inverse of the function $f:[-1,1] \rightarrow$ Range (f).

- View Text Solution

4. Show that the relation R in the set of real numbers, defined as $R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive nor symmetric nor transitive.
5. If $a>b>c>0$, then prove that
$\cot ^{-1}\left(\frac{a b+1}{a-b}\right)+\cot ^{-1}\left(\frac{b c+1}{b-c}\right)+\cot ^{-1}\left(\frac{c a+1}{c .-a}\right)=0$

- Watch Video Solution

6. A bag contains 6 black and 3 white balls. Another bag contains 5 black and 4 white balls. If one ball is drawn from each bag, find the probability that these two balls are of the same colours

- Watch Video Solution

7. If $A=\left[\begin{array}{ll}3 & 1 \\ -1 & 2\end{array}\right]$ then prove that $A^{2}-5 A+7 I=O$
8. Answer any three questions
(c) If $\left[\begin{array}{ll}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right] A=\left[\begin{array}{lll}-1 & -1 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15\end{array}\right]$, find A .

- View Text Solution

9. If $A=\left[\begin{array}{ll}2 & 5 \\ 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & -3 \\ 2 & 5\end{array}\right]$, verify that $|A B|=|A||B|$.

- Watch Video Solution

10. The odds against A solving a certain problem are 4 to 3 and the odds in favour of B solving the same problem are 7
to 5 . Find the probability that the problem will be solved.

D Watch Video Solution

11. Find the equations of all the lines of slope 2 and that are tangent to the curve $y=\frac{1}{x-3}, x \neq 3$.

- Watch Video Solution

12. Prove that the function $f(x)=\tan x-4 x$ is strictly decreasing on $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$.

- Watch Video Solution

13. If $y=\cos ^{-1}\left\{2 x \sqrt{1-x^{2}}\right\}$, find $\frac{d y}{d x}$.

- Watch Video Solution

14. If $y=(\sin y)^{x}$, find $\frac{d y}{d x}$.

- Watch Video Solution

15. Verify Rolle.s theorem for $f(x)=\frac{\sin x}{e^{x}}$ on $0 \leq x \leq \pi$.

- Watch Video Solution

16. Show that the function $y=(A+B x) e^{3 x}$ is a solution of the equation $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=0$
17. Solve $(x+1) \frac{d y}{d x}=2 x y$.

- Watch Video Solution

18. Evaluate $\int e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x$

- Watch Video Solution

19. Find the area of the region bounded by the curve $y=x^{3}$ and the lines $y=x+6$ and $y=0$.
20. Show that the points whose position vectors are $5 \hat{i}+5 \hat{k}, 2 \hat{i}+\hat{j}+3 \hat{k}$ and $-4 \hat{i}+3 \hat{j}-\hat{k}$ are collinear.

- Watch Video Solution

21. Find the vector equation of the plane passing through the points $3 \hat{i}+4 \hat{j}+2 \hat{k}, 2 \hat{i}-2 \hat{j}-\hat{k}$ and $7 \hat{i}+6 \hat{k}$.

View Text Solution

22. Prove that if a plane has the intercepts $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and is at a distance of p units from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.
23. Find the equation in vector and Cartesian from of the plane passing through the point $(3,-3,1)$ and norrmal to the line joining the points $(3,4,-1)$ and $(2,-1,5)$

- Watch Video Solution

24. Prove that $\sin \left(\cos ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}\right)=\frac{63}{65}$

- Watch Video Solution

25. Answer any three questions
(b) A house wife wishes to mix together two kinds of food X and Y , in such a way that the mixture contains at least 10
units of vitamin A, 12 units of vitamin B and 8 units of vitamin C.

The vitamin contents of 1 kg of food are given below | | Vitamin A | Vitamin B | Vitamin C |
| :---: | :---: | :---: | :---: |
| Food X | 1 | 2 | 3 |
| Food Y | 2 | 2 | 1 |

1 kg of food X costs Rs. 6 and 1 kg of food Y costs Rs. 10.
Find the least cost of the mixture will produce the diet.

View Text Solution

26. Answer any three questions
(c) Show that $f:[-1,1] \rightarrow R$, given by $f(x)=\frac{x}{x+2}$ is one-one, find the inverse of the function $f:[-1,1] \rightarrow$ Range (f).
27. Check if the relation R on set of real numbers, defined as $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexsive, symmetric or transitive.

- Watch Video Solution

28. Answer any three questions
(e) If $a>b>c>0$, then prove that
$\cot ^{-1}\left(\frac{a b+1}{a-b}\right)+\cot ^{-1}\left(\frac{b c+1}{b-c}\right)+\cot ^{-1}\left(\frac{c a+1}{c^{\prime}-a}\right)=\pi$

D Watch Video Solution

29. A bag contains 6 black and 3 white balls. Another bag contains 5 black and 4 white balls. If one ball is drawn from each bag, find the probability that these two balls are of the same colours

- Watch Video Solution

30. If $A=\left[\begin{array}{ll}3 & 1 \\ -1 & 2\end{array}\right]$ then prove that $A^{2}-5 A+7 I=O$

- Watch Video Solution

31. Answer any three questions
(c) If $\left[\begin{array}{ll}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right] A=\left[\begin{array}{lll}-1 & -1 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15\end{array}\right]$, find A .
32. If $A=\left[\begin{array}{ll}2 & 5 \\ 2 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & -3 \\ 2 & 5\end{array}\right]$, verify that $|A B|=|A||B|$.

- Watch Video Solution

33. The odds against A solving a certain problem are 4 to 3 and the odds in favour of B solving the same problem are 7 to 5 . Find the probability that the problem will be solved.
34. Find the equations of all the lines of slope 2 and that are tangent to the curve $y=\frac{1}{x-3}, x \neq 3$.

- Watch Video Solution

35. Prove that the function $f(x)=\tan x-4 x$ is strictly decreasing on $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$.

- Watch Video Solution

36. If $y=\sin ^{-1}\left[x \sqrt{1-x}-\sqrt{x} \sqrt{1-x^{2}}\right]$ then find $\frac{d y}{d x}$

- Watch Video Solution

37. If $(\cos x)^{y}=(\cos y)^{x}$, then find $\frac{d y}{d x}$.

- Watch Video Solution

38. Verify Rolle.s theorem for $f(x)=\frac{\sin x}{e^{x}}$ on $0 \leq x \leq \pi$.

- Watch Video Solution

39. Show that the function $y=(A+B x) e^{3 x}$ is a solution of the equation $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=0$

- Watch Video Solution

40. Solve $(x+1) \frac{d y}{d x}=2 x y$.

- Watch Video Solution

41. Evaluate $\int e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x$

- Watch Video Solution

42. Find the area of the region bounded by the curve $y=x^{3}$ and the lines $y=x+6$ and $y=0$.

- Watch Video Solution

43. Show that the points whose position vectors are $5 \hat{i}+5 \hat{k}, 2 \hat{i}+\hat{j}+3 \hat{k}$ and $-4 \hat{i}+3 \hat{j}-\hat{k}$ are collinear.
44. Answer any three questions
(b) Find the vector equation of the plane passing through the points $3 \hat{i}+4 \hat{j}+2 \hat{k}, 2 \hat{i}-2 \hat{j}-\hat{k}$ and $7 \hat{i}+6 \hat{k}$.

- View Text Solution

45. Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.
46. Find the equation in vector and Cartesian from of the plane passing through the point $(3,-3,1)$ and norrmal to the line joining the points $(3,4,-1)$ and $(2,-1,5)$

D Watch Video Solution

Section C 30 Marks

1.

$x=\sin ^{-1}\left(\frac{2 t}{1+t^{2}}\right)$ and $y=\tan ^{-1}\left(\frac{2 t}{1-t^{2}}\right), t>1$
prove that $\frac{d y}{d x}=1$.

D Watch Video Solution

2. Find the equations of the tangent to the curve $y=x^{2}-2 x+7$, which is
(i) parallel to the line $2 x-y+9=0$.
(ii) perpendicular to the line $5 y-15 x=13$.

- Watch Video Solution

3. Find the area of the region bounded by $y=-1, y=2, x=y^{3}$ and $x=0$.

D Watch Video Solution

4. Solve $\frac{d y}{d x}=e^{x+y}+e^{-x+y}$.
5. Evaluate $\int e^{x}\left(\frac{1+\sin x \cos x}{\cos ^{2} x}\right) d x$.

- Watch Video Solution

6. Find the points on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of 5 units from the point $\mathrm{P}(1,3,3)$.

- Watch Video Solution

7.

Prove
that
$\cos ^{-1}\left[\frac{\cos \alpha+\cos \beta}{1+\cos \alpha \cos \beta}\right]=2 \tan ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\right)$
8. Answer any one question
(b) A factory makes tennis rackets and cricket bats. A tennis
racket takes 1.5 h of machine time and 3 h of craft man.s
time in its making, while a cricket bat takes 3 h of machine time and 1 h of craftman.s time. In a day, the factory has the availability of not more than 42 h of machine time and 24 h of craftman.s time. If the profits on a racket and a bat are Rs. 20 and Rs. 10. respectively then find the number of tennis rackets and cricket bats that the factory must manufacture to earn the maximum profit. Make an LPP and solve it graphically.
9. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by
$f(n)= \begin{cases}\frac{n+1}{2} & \text { if } \mathrm{n} \text { is odd } \\ \frac{n}{2} & \text { if } \mathrm{n} \text { is even }\end{cases}$
Show that f is many one and onto function.

- Watch Video Solution

10. Answer any one question
(a) Determine the product
$\left[\begin{array}{lll}-4 & 4 & 4 \\ 7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]\left[\begin{array}{lll}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$ and use it to solve the
following system of equations
$x-y+z=4, x-2 y-2 z=9,2 x+y+3 z=1$.
11. Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that bath balls drawn are black?

D View Text Solution

12. Find the inverse of the following matrix using elementary transformation $\left[\begin{array}{lll}3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{array}\right]$.

D View Text Solution

13.

$x=\sin ^{-1}\left(\frac{2 t}{1+t^{2}}\right)$ and $y=\tan ^{-1}\left(\frac{2 t}{1-t^{2}}\right), t>1$ prove that $\frac{d y}{d x}=1$.

(D) Watch Video Solution

14. Find the equations of the tangent to the curve $y=x^{2}-2 x+7$, which is
(i) parallel to the line $2 x-y+9=0$.
(ii) perpendicular to the line $5 y-15 x=13$.

- Watch Video Solution

15. Find the area of the region bounded by $y=-1, y=2, x=y^{3}$ and $x=0$.

- Watch Video Solution

16. Solve $\frac{d y}{d x}=e^{x+y}+e^{-x+y}$.

- Watch Video Solution

17. Evaluate $\int e^{x}\left(\frac{1+\sin x \cos x}{\cos ^{2} x}\right) d x$.

D Watch Video Solution

18. Find the points on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of 5 units from the point $\mathrm{P}(1,3,3)$.

- Watch Video Solution

19. A variable plane is at a constant distance $3 r$ from the origin and meets the axes in A, B and C. Show that the locus of the centroid of the $\triangle A B C$ is $x^{-2}+y^{-2}+z^{-2}=r^{-2}$.

- Watch Video Solution

20.

Prove
that
$\cos ^{-1}\left[\frac{\cos \alpha+\cos \beta}{1+\cos \alpha \cos \beta}\right]=2 \tan ^{-1}\left(\tan \frac{\alpha}{2} \tan \frac{\beta}{2}\right)$

- Watch Video Solution

21. Answer any one question
(b) A factory makes tennis rackets and cricket bats. A tennis
racket takes 1.5 h of machine time and 3 h of craft man's time in its making, while a cricket bat takes 3 h of machine time and 1 h of craftman's time. In a day, the factory has the availability of not more than 42 h of machine time and 24 h of craftman's time. If the profits on a racket and a bat are Rs. 20 and Rs. 10. respectively then find the number of tennis rackets and cricket bats that the factory must manufacture to earn the maximum profit. Make an LPP and solve it graphically.

- View Text Solution

22. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by
$f(n)= \begin{cases}\frac{n+1}{2} & \text { if } \mathrm{n} \text { is odd } \\ \frac{n}{2} & \text { if } \mathrm{n} \text { is even }\end{cases}$
Show that f is many one and onto function.

- Watch Video Solution

23. Answer any one question
(a)
Determine
the
product
$\left[\begin{array}{lll}-4 & 4 & 4 \\ 7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]\left[\begin{array}{lll}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$ and use it to solve the
following
system
of
equations
$x-y+z=4, x-2 y-2 z=9,2 x+y+3 z=1$.

- View Text Solution

24. Answer any one question
(b) Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that bath balls drawn are black?
25. Answer any one question
(c) Find the inverse of the following matrix using
elementary transformation $\left[\begin{array}{lll}3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1\end{array}\right]$.
