

MATHS

BOOKS - ARIHANT PRAKASHAN

VERY SIMILAR TEST 2

1. If
$$y=\sqrt{x+\sqrt{x+\sqrt{x+...\infty}}}$$
 , then find $rac{dy}{dx}.$

Watch Video Solution

2. Write the equation of tangent drawn to the curve $y = \sin x$ at the point (0,0) .

3. Intergrate
$$\int e^{e^{x}} e^{e^{x}} dx$$
.
Watch Video Solution
4. Write the order and degree of the differential equation in $\frac{d^{2}y}{dx^{2}} = y$
Watch Video Solution
5. Find the value of λ so that the vectors \vec{a} and \vec{b} are perpendicular to each other. $\vec{a} = 3\hat{i} + 4\hat{j}, \vec{b} = -5\hat{i} + \lambda\hat{j}$.

6. The projection of a line segment \overline{OP} , through origin O, on the coordinate axes are 6, 2, 3. Find the length of the line segment OP and its direction cosines.

7. Find the value of
$$\cos^2 \alpha \quad \sin^2 \alpha + 1 \quad 1$$
 $\cos^2 \beta \quad \sin^2 \beta + 1 \quad 1$ $\cos^2 \gamma \quad \sin^2 \gamma + 1 \quad 1$

8. If events A and B are not mutually exclusive and $P\left(\frac{A}{B}\right) = P\left(\frac{B}{A}\right)$

then prove that P(A)=P(B)

Watch Video Solution

9. If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N, then write the range of R.

10. Write the value of
$$\cos^{-1} \left(-\frac{1}{2} \right) + 2 \sin^{-1} \left(\frac{1}{2} \right)$$
.

Section B

1. Prove that

$$\tan^{-1}\left(\frac{6x-8x^3}{1-12x^2}\right) - \tan^{-1}\left(\frac{4x}{1-4x^2}\right) = \tan^{-1}2x, |2x| < \frac{1}{\sqrt{3}}.$$

Watch Video Solution

2. Find the feasible region of the following system

$$2x+y\geq 6, x-y\leq 3, x\geq 0, y\geq 0$$

3. Consider the binary operation $* : R \times R \to R$ and $o: R \times R \to R$ defined as a * b = |a - b| and aob = a. For all $a, b \in R$. Show that * is commutative but not associative, .o. is associative but not commutative.

4. If the function'f : $\mathbb{R} \to \mathbb{R}$ is given by $f(x) = x^2 + 2$ and $g:\mathbb{R} \to \mathbb{R}$ is given by $g(x) = \frac{x}{x-1}, x \neq 1$ then find fog and gof and hence find fog (2) and gof (-3).

Watch Video Solution

5. Solve for $x, 2 \tan^{-1}(\cos x) = \tan^{-1}(2 \operatorname{cosec} x)$.

	$\lceil x \rceil$	2	3	
6. Factorize the following.	1	x+1	3	
	_1	4	x	

7. If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ x & 2 & y \end{bmatrix}$$
 is a matrix satisfying AA=9I, then find the values

of x and y.

Watch Video Solution

8. If $A = ig[a_{ij}ig]$ is a square matrix such that

 $a_{ij}=i^2-j^2$, then check whether A is symmetric or skew -symmetric matric .

9. If $A(x_1, y_1)$, $B(x_2, y_2)$, and, $C(x_3, y_3)$ are vertices of an equilateral triangle whose each side is equal to a, then prove that $\begin{vmatrix} x_1 & y_1 & 2 \\ x_2 & y_2 & 2 \\ x_3 & y_3 & 2 \end{vmatrix}^2 = 3a^4.$

Watch Video Solution

10. A random variable X has following probability distribution .

A	0	1	2	3	4	5	6	7	
P(X)	0,	k	2k	2.k	3k	k2	$2k^2$	$7k^3 + k$	- :

View Text Solution

11. A random variable X has following probability distribution .

X	0	1	2	3	4	5	6	7
P(X)	0	k	2k	2.k	3k	k^2	$2k^2$	$7k^3 + k$

Find

P(X < 3)

12. A random variable X has following probability distribution .

X	0	1	2	3	4	5	6	7	
P(X)	0,	k	2k	2 <i>k</i>	3k	k^2	$2k^2$	$7k^{3} + k$	Find

P(X > 6)

View Text Solution

13. A random variable X has following probability distribution .

X	0	1	2	3	4	5	6	7
P(X)	0,	k	2k	2k	34	k^2	$2k^2$	$7h^3 + k$

Find

P(0 < X < 3).

View Text Solution

14. If
$$x=\sqrt{a^{\sin^{-1}t}}, y=\sqrt{a^{\cos^{-1}t}}$$
, then show that $rac{dy}{dx}=-rac{y}{x}.$

18. Find the equations of all lines having slope -1, that are tangent to

the curve
$$y=rac{1}{x-1}, x
eq 1.$$

Watch Video Solution

19. Evaluate
$$\int \frac{1}{\sqrt{8+3x-x^2}} dx.$$

Watch Video Solution

20. Evaluate
$$\int_0^{\pi/4} an^5 x dx$$
.

Watch Video Solution

21. Find the area enclosed by the ellipse
$$rac{x^2}{16}+rac{y^2}{9}=1.$$

22. Form the differential equation of the family of circles having centre

on Y -- axis and radius 3 units.

23. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, then prove that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$.

Watch Video Solution

24. If $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are three vectors such that $\left|\overrightarrow{a}\right| = 5, \left|\overrightarrow{b}\right| = 12, \left|\overrightarrow{c}\right| = 13$ and $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ then find the value of $\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{c}, \overrightarrow{a}$.

25. If \overrightarrow{a} , \overrightarrow{b} are unit vectors such that the vector $\overrightarrow{a} + 3\overrightarrow{b}$ is perpendicular to $7\overrightarrow{a} - 5\overrightarrow{b}$, then find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

26.	Find	the	shortest	distance	between	the	lines
$rac{x-}{3}$	$\frac{3}{2} = \frac{y}{-}$	$\frac{-8}{-1} =$	$\frac{z-3}{1}$ and	$\frac{x+3}{-3} = \frac{y}{-3}$	$\frac{+7}{2} = \frac{z-}{4}$	<u>3</u> .	
0	View Te	xt Solu	tion				

27. Passing through he point $(2,\,-3,\,1)$ and $(\,-1,\,1-7)$ and

perpendicular to the plane x - 2y + 5z + 1 = 0.

4. Using integration , find the area of triangle formed by the lines y = x + 3, 2y + 5x = 34 and 4y + 3x = 26.

6. Find the image of the point (1,6,3) on the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$. Also , write the equation of the line joining the given points and its image and find the length of segment joining given points and its image.

View Text Solution

View Text Solution

7. Find the inverse of $\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}$ using elecmentary operation.

View Text Solution

show that either a + b + c = 0 or a = b = c

Watch Video Solution

9. Suppose x has a binomial distribution $B\left(6, \frac{1}{2}\right)$ show that x =3 is the

most likely outcome

10. Consider $f\!:\!R_+ o [\,-5,\infty)$ given by

$$f(x)=9x^2+6x-5$$
 . Show that f is invertible with $f^{-1}(y)=\left(rac{\sqrt{y+6}-1}{3}
ight)$. Hence , find $f^{-1}(10)$

View Text Solution

11. Consider $f\!:\!R_+
ightarrow [\,-5,\infty)$ given by

$$f(x)=9x^2+6x-5$$
 . Show that f is invertible with $f^{-1}(y)=\left(rac{\sqrt{y+6}-1}{3}
ight)$. Hence , find y if $f^{-1}(y)=rac{4}{3}$ where R_+ is the set of all non negative real number

View Text Solution

12.

$$\cos^{-1}\Bigl(rac{x}{a}\Bigr) = \cos^{-1}\Bigl(rac{y}{b}\Bigr) = heta, ext{ prove that } rac{x^2}{a^2} - rac{2xy}{ab} \cos heta + rac{y^2}{b^2} = \sin^2 heta.$$

lf

13. Maximise Z = x + 2y

Subject to $x+2y\geq 100,$ $2x-y\leq 0,$ $2x+y\leq 200$ and $x\geq 0,$ $y\geq 0.$