©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT PRAKASHAN

VERY SIMILAR TEST 4

Section A

1. Differentiate $\tan ^{-1} x$ w.r.t. $\cot ^{-1} \mathrm{x}$

- Watch Video Solution

2. Obtain a differential eqution that should be satisfied by the
family of concentric circles $x^{2}+y^{2}=a^{2}$.
3. In a race, the probabilities of A and B winning the race are $\frac{1}{3}$ and $\frac{1}{6}$ respectively. Find the probability of neither of them winning the race.

- Watch Video Solution

4. What is the area bounded by $y=x, y=0, \mathrm{y}=0$ and $x=1$?

- Watch Video Solution

> 5. Find the cross product of vectors $\hat{i}-2 \hat{j}+\hat{k}$ and $4 \hat{i}-4 \hat{j}+7 \hat{k}$

- Watch Video Solution

6. If the area of circle increasing at a uniform rate, then prove that perimetre varies inversely as the radius.

- Watch Video Solution

7. Check whether the line $\frac{x-1}{2}=\frac{y-1}{2}=\frac{z-1}{2}$ passes through (0,0,0)

D View Text Solution

8. If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, then find $A^{2}+2 A$

- Watch Video Solution

9. Show that the relation R on the set $\{1,2,3)$ given by $R=\{(1,1),(2,2)$, $(3,3),(1,2),(2,3))$ is reflexive but neither symmetric nor transitive.

- Watch Video Solution

10. What is a constraint in a linear programming problem?

- Watch Video Solution

Section B

1. If $\tan ^{-1}\left(\frac{x-2}{x-4}\right)+\tan ^{-1}\left(\frac{x+2}{x+4}\right)=\frac{\pi}{4}$, then find ther value of x.

- Watch Video Solution

2. If the function $\mathrm{f}:[1, \infty) \rightarrow[1, \infty)$ defined by $\mathrm{f}(\mathrm{x})=2^{x(x-1)}$ is invertible, then find $f^{-1}(\mathrm{x})$.

- Watch Video Solution

3. Two tailors P and Q earn ₹ 150 and ₹ 200 per day respectively. P can stitch 6 shirts and 4 trousers a day, while Q can stitch 10 shirts and 4 trousers per day. How many days should each work to produce atleast 60 shirts and 32 trousers at minimum labour cost ?

- View Text Solution

4. Show that the relation is congruent to on the set all triangles in a plane is an equivalence relation

- View Text Solution

5. If $\sin ^{-1} x+\tan ^{-1} x=\frac{\pi}{2}$, then prove that $2 x^{2}+1=\sqrt{5}$

(Watch Video Solution

6. For the matrices A and B, verify that $(A B)=B^{\prime} A^{\prime}$, where
$A=\left[\begin{array}{l}1 \\ -4 \\ 3\end{array}\right]$ and $B=\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right]$.

D Watch Video Solution

7. If $A=\left[\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 3 & 2\end{array}\right]$, then show that $|A B|=|A||B|$
8. A can hit a target 4 times out of 5 times, B can hit the target 3 times out of 4 times and C can hit the target 2 times out of 3 times. They fire simultaneously. Find the probability that any two out of A, B and C will hit the target.

- Watch Video Solution

9. Find A^{-1}, \quad if $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 7\end{array}\right]$

- Watch Video Solution

10. A fair die is rolled consider the following events $A=\{2,4,6\}, B=$ $\{4,5\}$ and $C=\{3,4,5,6\}$ Find
$P(A \cup B / C)$
11. A fair die is rolled consider the following events $A=\{2,4,6\}, B=$ $\{4,5\}$ and $C=\{3,4,5,6\}$ Find
$P(A \cap B / C)$

- Watch Video Solution

12. If $y=a \sin x+b \cos x$, then prove that $\frac{d^{2} y}{d x^{2}}+y=0$

- Watch Video Solution

13. Check whether Lagrange.s mean value theorem is applicable to
$f(x)=x^{\frac{1}{3}},-1<x<1$

- View Text Solution

14. Find the point on the curve, $y=2 x^{2}-6 x-4$ at which the tangent is parallel to x-axis

D Watch Video Solution

15. Using differentials, find approximate value
$(255)^{1 / 4}$

- Watch Video Solution

16. If $f(x)= \begin{cases}\frac{1-\cos 4 x}{x^{2}} & \text { when } x<0 \\ a & \text { when } x=0 . \text { is continuous at } \mathrm{x}=0, \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}+4} & \text { when } x>0\end{cases}$ then the value of a will be.
17. Find $\int x^{2} e^{x} d x$

- Watch Video Solution

18. Find the particular solution of the differential equation log $\left(\frac{d y}{d x}\right)=3 x+4 y$, given that $\mathrm{y}=0$ when $\mathrm{x}=0$

- Watch Video Solution

19. Find the general solution of the differential equation $\frac{d y}{d x}=y \tan x-y^{2} \sec x$

D Watch Video Solution

20. Find the area between X - axis and the curve $y=\sin x$ from $x=$

- Watch Video Solution

21. Evaluate $\int_{0}^{1} e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) \mathrm{dx}$

D Watch Video Solution

22. Given that, $|\vec{a}|=1$ and $|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=\sqrt{3}$. If \vec{c} is a vector such that $\vec{c}-\vec{a}-2 \vec{b}=3(\vec{a} \times \vec{b})$, then find the value of $\vec{c} \cdot \vec{b}$

- View Text Solution

23. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$, measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$
24. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors and \vec{r} is only arbitrary vector, then find the value of $[\vec{b} \vec{c} \vec{c} \vec{r}] \vec{a}+[\vec{c} \vec{a} \vec{r} \quad \vec{r}] \vec{b}+[\vec{a} \vec{b} \vec{r}] \vec{c}$

D View Text Solution

25. Find the image of the point $A(1,0,0)$ in the line $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$

- View Text Solution

26. Find the shortest distance between the lines

$$
\frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-1}{1} \text { and } \frac{x-2}{2}=\frac{y+1}{1}=\frac{z+1}{2}
$$

D View Text Solution

1. Defferentiate
$\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right) w . r . t . \sqrt{1-x^{2}}$

- Watch Video Solution

2. Show that $\sin ^{P} \theta \cos ^{q} \theta$ attains a maximum value, when
$\theta=\tan ^{-1} \sqrt{\frac{p}{q}}$.

D Watch Video Solution

3. Evaluate $\int_{0}^{\pi} \frac{x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$

- Watch Video Solution

4. Find the area of the region $\left\{(x, y): y^{2} \leq 6\right.$ ax and $\left.x^{2}+y^{2} \leq 16 a^{2}\right\}$ by using integration

D View Text Solution

5. Solve the differential equation
$x\left(x^{2}-x^{2} y^{2}\right) d y+y\left(y^{2}+x^{2} y^{2}\right) d x=0$

- Watch Video Solution

6. Find the image of a point having position vector $(3 \hat{i}-\hat{j}+\hat{k})$ in the plane $\vec{r} \cdot(3 \hat{i}+\hat{j}+4 \hat{k})=2$

D View Text Solution

7. Prove that by vector methord, in any
$\triangle A B C, \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

- Watch Video Solution

8.

If
$f: R \rightarrow R$
is
given
by
$f(x)=\sin ^{2} x+\sin ^{2}\left(x+\frac{\pi}{3}\right)+\cos x \cos \left(x+\frac{\pi}{3}\right)$ and $g: R \rightarrow R$
is such $\mathrm{g}(5 / 4)=1$. Show that go $\mathrm{f}: R \rightarrow R$ is a constant function

D View Text Solution

9. Solve for x ,
$\tan ^{-1}(x-1)+\tan ^{-1} x+\tan ^{-1}(x+1)=\tan ^{-1} 3 x$.

- Watch Video Solution

10. Solve that following LPP graphically. Maximise : Z = $22 \mathrm{x}+18 \mathrm{y}$ subject to : $x+y \leq 20,3 x+2 y \leq 48, x \geq 0, y \geq 0$

- Watch Video Solution

11. If x, y, z are positive and are the $p t h$, q th and r th terms of a G.P.
then prove that
$\left|\begin{array}{lll}\log x & p & 1 \\ \log y & q & 1 \\ \log z & r & 1\end{array}\right|=0$

- Watch Video Solution

12. If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$ find k

- View Text Solution

13. Three cards are drawn successively with replacement from a well-shuffled deck of 52 cards. If getting a card of spade is a success, then find the probability distribution of number of successes

D View Text Solution

