



# MATHS

# **BOOKS - ARIHANT PRAKASHAN**

# **VERY SIMILAR TEST 6**

Section A Answer All The Questions

1. Prove that 
$$f(x)=rac{3}{x}+7$$
 is strictly decreasing for  $x\in R, (x
eq 0).$ 

Watch Video Solution

**2.** Evaluate 
$$\int (ax+b)^3 dx$$

3. Find the integrating factor of the differential equation

$$igg(rac{e^{-2\sqrt{x}}}{\sqrt{x}}-rac{y}{\sqrt{x}}igg)rac{dx}{dy}=1$$

Watch Video Solution

**4.** Find 
$$\lambda$$
 and  $\mu$  if  $\left(2\hat{i}+6\hat{j}+27\hat{k}\right) imes\left(\hat{i}+\lambda\hat{j}+\mu\hat{k}\right)=\stackrel{
ightarrow}{0}$ .

Watch Video Solution

**5.** How many straight lines in space through the origin are equally inclined to the coordinate axes?

6. Let be a binary operation defined by a\*b = 7a+9b. Find 3\*4.

7. Evaluate 
$$\sin\left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right]$$
.

**8.** Prove the following : 
$$\begin{bmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{bmatrix} = 0$$

Watch Video Solution

#### 9. For the following probability distribution

| Х    | 1              | <b>2</b>      | 3              | 4             |                 |
|------|----------------|---------------|----------------|---------------|-----------------|
| P(X) | $\frac{1}{10}$ | $\frac{1}{5}$ | $\frac{3}{10}$ | $\frac{2}{5}$ | Find $E(X^2)$ . |

Watch Video Solution

10. Differentiate the function  $anig(x^2+5ig)$ 

1.Provethat
$$\cot^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) = \frac{x}{2}, 0 < x < \frac{\pi}{2}, \text{ or } x \in \left(0, \frac{\pi}{4}\right)$$
..**Watch Video Solution**2. Solve the following LPP graphically.Maximize  $z = 4x_1 + 3x_2$  $x_1 + 2x_2 \leq 80, 2x_1 + x_2 \geq 20$  and  $x_1, x_2 \geq 0$ 

3. Show that the relation R on the set Z of integers given by R = {(a,b): 2

divides (a - b)} is an equivalence relation.

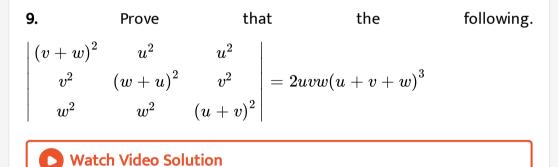
**4.** Show that the function  $f\!:\!R o R$  defined by  $f(x)=rac{x}{x^2+1}$  is neither one-one nor onto.

5. Solve for x, 
$$an^{-1}(x+1) + an^{-1}(x-1) = an^{-1} rac{8}{31} [0 < x < 1].$$

Watch Video Solution

6. If P(A)=0.8 P(B)=0.5 and  $P\!\left(\frac{B}{A}
ight)$  =0.4 then find the value of  $P(A\cup B)$ 

## Watch Video Solution


**7.** Find the inverse of the following matrices using elementary transformation

 $\begin{bmatrix} 3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2 \end{bmatrix}$ 



8. If 
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
 then prove that  $A^2 - 5A + 7I = O$ 

Watch Video Solution



**10.** Find the mean and the variance of the number obtained on a throw of an unbiased coin.

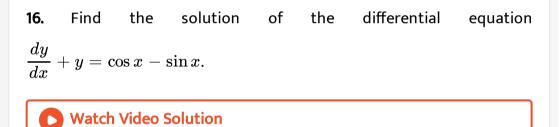
**11.** Find the equation of the tangent and normal to the curve  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  at the point  $(\sqrt{2}a, b)$ .

Watch Video Solution

12. Find the local maximum and local minimum values of the function

$$f(x) = \frac{4}{x+2} + x.$$

Watch Video Solution


13. If 
$$\log \sqrt{x^2+y^2} = an^{-1}igg(rac{x}{y}igg)$$
 , then show that  $rac{dy}{dx} = rac{y-x}{y+x}$  .

14. If 
$$e^{y/x}=rac{x}{a+bx}$$
 then show that  $x^3rac{d}{dx}igg(rac{dy}{dx}igg)=igg(xrac{dy}{dx}-yigg)^2$ 

15. Verify, MVT, if  $f(x) = x^2 - 4x - 3$  in the interval [a,b], where a =1

and b=4.





17. Solve 
$$rac{dy}{dx}+2y an x=\sin x, ext{if}y\Big(rac{\pi}{3}\Big)=0.$$

**18.** Evaluate 
$$\int \frac{dx}{e^{4x}-5}$$

19. Evaluate 
$$\int_1^2 \left(4x^3-5x^2+6x+9
ight) \mathsf{d} \mathsf{x}$$

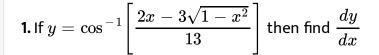
**20.** Prove that the curves  $y^2 = 4x$  and  $x^2 = 4y$  divide the area of the square bounded by x = 0, x = 4, y = 4 and y = 0 into three equal parts.

#### Watch Video Solution

**21.** Find the vector equation of the plane which contains the line of intersection of the planes  $r(\hat{i} + \hat{j} + \hat{k}) = 6$  and  $r.(2\hat{i} + 3\hat{j} + 4\hat{k}) = -5$  and the point (1, 1, 1).

22. Prove that the lines 
$$\frac{x-2}{1} = \frac{y-4}{4} = \frac{z-6}{7}$$
 and  $\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$  are coplanar.

**23.** Prove that 
$$\left(\overrightarrow{a}\times\hat{i}
ight)^2+\left(\overrightarrow{a}\times\hat{j}
ight)^2+\left(\overrightarrow{a}\times\hat{k}
ight)^2=2\overrightarrow{a}^2$$
 .


Watch Video Solution

24. Prove that the sum of the vectors represented by the sides of a

closed polygon taken in order is a zero vector.



Section C Answer Any One Questions



2. Show that the semivertical angle of a cone of given slant height is

 $an^1\sqrt{2}$  when its volume is maximum.

Watch Video Solution

**3.** Find the area between the curve  $y^2 = 4x$  line x + y = 3 and Y-axis.

Watch Video Solution

**4.** Find the solution of the following differential equations:

(2x+3y-5)dy/dx+3x+2y-5-0

5. Evaluate 
$$\int_{0}^{4} ig(x+e^{2x}ig) dx$$
, as limit of sum.

6. Find the equation of the plane through the intersection of the planes

$$\overrightarrow{r}.\left(\hat{i}+3\hat{j}
ight)-6=0$$
 and  $\overrightarrow{r}.\left(3\hat{i}-\hat{j}-4\hat{k}
ight)=0$ , whose

perpendicular distance from origin is unity.

## Watch Video Solution

7.

$$\cos^{-1}\Big(rac{x}{a}\Big) = \cos^{-1}\Big(rac{y}{b}\Big) = heta, ext{ prove that } rac{x^2}{a^2} - rac{2xy}{ab} \cos heta + rac{y^2}{b^2} = \sin^2 heta$$

lf

Watch Video Solution

**8.** Prove that for any  $f\colon X o Y,$   $foid_x=f=id_Y$  of.

**9.** Solve the following system of equations by the matrix inversion method

x + y + z = 4

2x - y + 3z + 1

3x + 2y - z = 1

View Text Solution

**10.** The probability that a student securing first division ia an examination is  $\frac{1}{10}$ . What is the probability that out of 100 students twenty pass in first division ?



**11.** Find the inverse of the following matrix using elementary

transformation : 
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 1 & 0 & 2 \end{bmatrix}$$