©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT PRAKASHAN

VERY SIMILAR TEST 7

Section A 10 Marks

1. Write the set of points, where the function $f(x)=x^{3}$ has relative (local) extreme.

- Watch Video Solution

2. Evaluate $\int_{0}^{\pi / 2} e^{x}(\sin x-\cos x) d x$.
3. Write the order and degree of the differential equation in $\frac{d^{2} y}{d x^{2}}=y$

(Watch Video Solution

4. Write a vector normal to $\hat{i}+\hat{k}$ and $\hat{i}+\hat{j}$.

- Watch Video Solution

5. Find the distance between the parallel planes $3 x-2 y+6 z-7=0$ and $3 x-$ $2 y+6 z+14=0$.

- Watch Video Solution

6. Consider $\mathrm{f}:(1,2,3) \rightarrow\{a, b, c)$ given by $\mathrm{f}(1)=\mathrm{a}, \mathrm{f}(2)=\mathrm{b}, \mathrm{f}(3)=\mathrm{c}$. Find f^{-1}. Show that $\left(f^{-1}\right)^{-1}=\mathrm{f}$.

D Watch Video Solution

7. Find the domain of the function defined by $f(x)=\sin ^{-1} \sqrt{x-1}$.

- Watch Video Solution

8. For what value of λ, the matrix
$\left[\begin{array}{ccc}1 & \lambda & 0 \\ 3 & -1 & 2 \\ 4 & 1 & 5\end{array}\right]$ is singular?

- Watch Video Solution

9. Two cards are drawn from a pack of 52 cards, find the probability that they are of different suits.

Watch Video Solution
10. Examine the continuity for function $\mathrm{f}(\mathrm{x})=\frac{1}{x+3}, x \in R$.
11. Write the set of points, where the function $f(x)=x^{3}$ has relative (local) extreme.

- Watch Video Solution

12. Evaluate $\int_{0}^{\pi / 2} e^{x}(\sin x-\cos x) d x$.

- Watch Video Solution

13. Write the order and degree of the differential equation in $\frac{d^{2} y}{d x^{2}}=y$

- Watch Video Solution

14. Write a vector normal to $\hat{i}+\hat{k}$ and $\hat{i}+\hat{j}$.

- Watch Video Solution

15. Find the distance between the parallel planes $3 x-2 y+6 z-7=0$ and $3 x-2 y+6 z+14=0$.

Watch Video Solution

16. Consider $\mathrm{f}:(1,2,3) \rightarrow$ \{a,b,c) given by $\mathrm{f}(1)=\mathrm{a}, \mathrm{f}(2)=\mathrm{b}, \mathrm{f}(3)=\mathrm{c}$. Find f^{-1}. Show that $\left(f^{-1}\right)^{-1}=\mathrm{f}$.

- Watch Video Solution

17. Find the domain of the function defined by $f(x)=\sin ^{-1} \sqrt{x-1}$.

- Watch Video Solution

18. For what value of λ, the matrix
$\left[\begin{array}{ccc}1 & \lambda & 0 \\ 3 & -1 & 2 \\ 4 & 1 & 5\end{array}\right]$ is singular?
19. Two cards are drawn from a pack of 52 cards, find the probability that they are of different suits.

- Watch Video Solution

20. Examine the continuity for function $\mathrm{f}(\mathrm{x})=\frac{1}{x+3}, x \in R$.

- View Text Solution

Section B 60 Marks

1. Evaluate $\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$.
2. One kind of cake requires 200 g of flour and 25 g of fat and another kind of cake requires 100 g of flour and 50 g of fat. The maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes, formulate the problem as LPP.

- Watch Video Solution

3. Let * be a binary operation on Q defined by $a * b=a b+1$. Determine whether * is commutative but not associative.

- Watch Video Solution

4. Let $A=R-\{2\}$ and $B=R-\{1\}$. If $f: A \rightarrow B$ is a function defined by $f(x)=$ $\frac{x-1}{x-2}$ then show that f is one-one and onto. Hence, find f^{-1}.

- Watch Video Solution

5. Prove that following
$\cot ^{-1}\left(\frac{x y+1}{x-y}\right)+\cot ^{-1}\left(\frac{y z+1}{y-z}\right)+\cot ^{-1}\left(\frac{z x+1}{z-x}\right)=0,(0<x y, y z$,

- Watch Video Solution

6. There are 25 tickets bearing numbers from 1 to 25 . One ticket is drawn at random. Find the probability that the number on it is a multiple of 5 or
7.

Watch Video Solution

7. IF $A=\left[\begin{array}{ll}1 & \tan x \\ -\tan x & 1\end{array}\right]$ then show that
$A^{T} A^{-1}=\left[\begin{array}{ll}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right]$

- Watch Video Solution

8. Show that the following systems of linear equations is consistent and also find their solution by using inverse of a matrix,
$x+2 y=2$ and $2 x+3 y=3$.

- View Text Solution

9. If $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, prove that
$\left[\begin{array}{ccc}\sin ^{2} A & \cot A & 1 \\ \sin ^{2} B & \cot B & 1 \\ \sin ^{2} C & \cot C & 1\end{array}\right]=0$

- Watch Video Solution

10. Find the probability distribution of number of doublets in four throws of a pair of dice. Find also the mean and the variance of the number of doublets.

- Watch Video Solution

11. Find the equasion of the tangents drawn from the point $(1,2)$ to the
$y^{2}-2 x^{3}-4 y+8=0$

- Watch Video Solution

12. Find the intervals in which the function
$y=\sin x, x \in[0,2 \pi]$ is increasing and decreasing.

- Watch Video Solution

13. If $y=\left(\sin ^{-1} x\right)^{2}$, prove that
$\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$

Watch Video Solution
14. Differentiate $\log _{10} x+\log _{x} 10+\log _{x} x+\log _{10} 10$.

- View Text Solution

15. Verify the LMVT for the function $f(x)=\frac{1}{4 x-1}, 1 \leq x \leq 4$.

- Watch Video Solution

16. Find the solution of the differential equation.
$(x-y-2) d x+(x-2 y-3) d y=0$

- View Text Solution

17. Find the differential equation by eleminating the orbitary constants in the curve $a x^{2}+b y=1$.

- Watch Video Solution

18. Evaluate the following integrals :
$\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x$.
19. Prove that $\int_{-1}^{1} \log \left(\frac{2-x}{2+x}\right) d x=0$

- Watch Video Solution

20. Find the area enclosed bt the two paraboles $y^{2}=4 \mathrm{ax}$ and $x^{2}=4 \mathrm{ay}$.

- Watch Video Solution

21. By computing shortest distance, determine whether the following pair of lines intersect or not $\vec{r}=(4 \hat{i}+5 \hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k})$.

- Watch Video Solution

22. Find the equation of the plane Parallel to the plane $2 x-y+3 z+1=0$ and at a distance 3 units away from it.
23. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors of equal magnitude, then find the angle between \vec{a} and $(\vec{a}+\vec{b}+\vec{c})$.

- Watch Video Solution

24. If \vec{a}, \vec{b} and \vec{c} are three vectors, such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then prove that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.

- Watch Video Solution

25. If $\widehat{a}, \hat{b}, \hat{c}$ are unit vectors and $\widehat{a} \times(\hat{b} \times \hat{c})=\frac{1}{2} \hat{b}$, then find the angles that \hat{a} makes with \hat{b} and \hat{c} where \hat{b}, \hat{c} are not parallel.

- Watch Video Solution

26. Evaluate $\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$.

- Watch Video Solution

27. One kind of cake requires 200 g of flour and 25 g of fat and another kind of cake requires 100 g of flour and 50 g of fat. The maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes, formulate the problem as LPP.

- Watch Video Solution

28. Let * be a binary operation on Q defined by $a * b=a b+1$. Determine whether * is commutative but not associative.

- Watch Video Solution

29. Let $A=R-\{2\}$ and $B=R-\{1\}$. If $f: A \rightarrow B$ is a function defined by $f(x)=$ $\frac{x-1}{x-2}$ then show that f is one-one and onto. Hence, find f^{-1}.

- Watch Video Solution

30. Prove that following
$\cot ^{-1}\left(\frac{x y+1}{x-y}\right)+\cot ^{-1}\left(\frac{y z+1}{y-z}\right)+\cot ^{-1}\left(\frac{z x+1}{z-x}\right)=0,(0<x y, y z$,

- Watch Video Solution

31. There are 25 tickets bearing numbers from 1 to 25 . One ticket is drawn at random. Find the probability that the number on it is a multiple of 5 or 6.

- Watch Video Solution

32. IF $A=\left[\begin{array}{ll}1 & \tan x \\ -\tan x & 1\end{array}\right]$ then show that $A^{T} A^{-1}=\left[\begin{array}{ll}\cos 2 x & -\sin 2 x \\ \sin 2 x & \cos 2 x\end{array}\right]$

- Watch Video Solution

33. Show that the following systems of linear equations is consistent and also find their solution by using inverse of a matrix, $x+2 y=2$ and $2 x+3 y=3$.

- View Text Solution

34. If $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, prove that
$\left[\begin{array}{ccc}\sin ^{2} A & \cot A & 1 \\ \sin ^{2} B & \cot B & 1 \\ \sin ^{2} C & \cot C & 1\end{array}\right]=0$
35. Find the probability distribution of number of doublets in four throws of a pair of dice. Find also the mean and the variance of the number of doublets.

- Watch Video Solution

36. Find the equasion of the tangents drawn from the point $(1,2)$ to the curve.
$y^{2}-2 x^{3}-4 y+8=0$

- Watch Video Solution

37. Find the intervals in which the function
$y=\sin x, x \in[0,2 \pi]$ is increasing and decreasing.

- Watch Video Solution

38. If $y=\left(\sin ^{-1} x\right)^{2}$, prove that
$\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$

Watch Video Solution

39. Differentiate $\log _{10} x+\log _{x} 10+\log _{x} x+\log _{10} 10$.

- View Text Solution

40. Verify the LMVT for the function $f(x)=\frac{1}{4 x-1}, 1 \leq x \leq 4$.

- Watch Video Solution

41. Find the solution of the differential equation.
$(x-y-2) d x+(x-2 y-3) d y=0$

- View Text Solution

42. Find the differential equation by eleminating the orbitary constants in the curve $a x^{2}+b y=1$.

- Watch Video Solution

43. Evaluate $\int \frac{e^{6 \log x}-e^{5 \log x}}{e^{4 \log x}-e^{3 \log x}} d x$

(Watch Video Solution

44. Prove that $\int_{-1}^{1} \log \left(\frac{2-x}{2+x}\right) d x=0$

- Watch Video Solution

45. Find the area enclosed bt the two paraboles $y^{2}=4 \mathrm{ax}$ and $x^{2}=4 \mathrm{ay}$.

- Watch Video Solution

46. By computing shortest distance, determine whether the following pair of lines intersect or not $\vec{r}=(4 \hat{i}+5 \hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k})$.

- Watch Video Solution

47. Find the equation of the plane Paralel to the plane $2 x-y+3 z+1=0$ and at a distance 3 units away from it.

- Watch Video Solution

48. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors of equal magnitude, then find the angle between \vec{a} and $(\vec{a}+\vec{b}+\vec{c})$.

- Watch Video Solution

49. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then prove that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.

- Watch Video Solution

50. If $\widehat{a}, \hat{b}, \hat{c}$ are unit vectors and $\widehat{a} \times(\hat{b} \times \hat{c})=\frac{1}{2} \hat{b}$, then find the angles that \hat{a} makes with \hat{b} and \hat{c} where \hat{b}, \hat{c} are not parallel.

- Watch Video Solution

Section C 30 Marks

1. If $\cos y=x \cos (a+y)$ then prove that

$$
\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}
$$

2. Show that the semi-vertical angle of right circular cone of given surface area and maximum volume is $\operatorname{cosec}^{-1}(3)$.

- Watch Video Solution

3. Find the area of the region bounded by the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$.

- Watch Video Solution

4. Find the solutions of the following differential equations :
$x \sin \frac{y}{x} d y=\left(y \sin \frac{y}{x}-x\right) d x$

- Watch Video Solution

5. $\int \frac{\cos x-\sin x}{\sqrt{8-\sin 2 x}} d x$
6. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line whose direction cosines are proportional to (2, 3, -6).

- View Text Solution

7. Find the points on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of 5 units from the point $\mathrm{P}(1,3,3)$.

- Watch Video Solution

8. Solve equation $3 \tan ^{-1} \frac{1}{(2+\sqrt{3})}-\tan ^{-1} \frac{1}{x}=\tan ^{-1} \frac{1}{3}$

- Watch Video Solution

9. Solve the following LPP graphically

Maximize, $Z=5 x_{1}+3 x_{2}$

Subject to $3 x_{1}+5 x_{2} \leq 15$
$5 x_{1}+2 x_{2} \leq 10$
$x_{1}, x_{2} \geq 0$

- Watch Video Solution

10. Show that the operation * given by $x^{*} y=x+y+-x y$ is a binary oeration on Z, Q and R but not on N .

- Watch Video Solution

11. Examining consistency and solvability, solve the following equation by matrix method.
$x+2 y-3 z=4$
$2 x+4 y-5 z=12$
$3 x-y+z=3$
12. From a survey conducted in a cancer hospital it is found that 10% of the patients were alcoholics, 30% chew gutka and 40% have no specific carcinogenic habits. If cancer strikes 80% of the smokers, 70% of alcoholics, 50% of the non specific, then estimateic the probability that a cancer patient chosen from any one of the above types, selected at random, is a smoker

- Watch Video Solution

13. From a survey conducted in a cancer hospital it is found that 10% of the patients were alcoholics, 30% chew gutka and 40% have no specific carcinogenic habits. If cancer strikes 80% of the smokers, 70% of alcoholics, 50% of the non specific, then estimateic the probability that a cancer patient chosen from any one of the above types, selected at random, is alcoholic
14. From a survey conducted in a cancer hospital it is found that 10% of the patients were alcoholics, 30% chew gutka and 40% have no specific carcinogenic habits. If cancer strikes 80% of the smokers, 70% of alcoholics, 50% of the non specific, then estimateic the probability that a cancer patient chosen from any one of the above types, selected at random, chews gutka

- Watch Video Solution

15. From a survey conducted in a cancer hospital it is found that 10% of the patients were alcoholics, 30% chew gutka and 40% have no specific carcinogenic habits. If cancer strikes 80% of the smokers, 70% of alcoholics, 50% of the non specific, then estimateic the probability that a cancer patient chosen from any one of the above types, selected at random,
has no specific carcinogenic habits.
16. Find the inverse of matix $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ -1 & -2 & -1 \\ 2 & 1 & -1\end{array}\right]$ by elementary transformation method and verify that "AA" $(-)=1$ '.

- View Text Solution

17. If $\cos y=x \cos (a+y)$ then prove that
$\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}$

- Watch Video Solution

18. Show that the semi-vertical angle of right circular cone of given surface area and maximum volume is $\operatorname{cosec}^{-1}(3)$.

- Watch Video Solution

19. Find the area of the portion of the ellipse $\frac{x^{2}}{12}+\frac{y^{2}}{16}=1$, bounded by the major-axis and the double ordiante $x=3$.

- View Text Solution

20. Find the solutions of the following differential equations:
$x \sin \frac{y}{x} d y=\left(y \sin \frac{y}{x}-x\right) d x$

D Watch Video Solution

21. $\int \frac{\cos x-\sin x}{\sqrt{8-\sin 2 x}} d x$

- Watch Video Solution

22. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line whose direction cosines are proportional to (2, 3, -6).
23. Find the points on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of 5 units from the point $P(1,3,3)$.

Watch Video Solution

24. Solve equation $3 \tan ^{-1} \frac{1}{(2+\sqrt{3})}-\tan ^{-1} \frac{1}{x}=\tan ^{-1} \frac{1}{3}$

Watch Video Solution

25. Solve the following LPP graphically

Maximize, $Z=5 x_{1}+3 x_{2}$
Subject to $3 x_{1}+5 x_{2} \leq 15$
$5 x_{1}+2 x_{2} \leq 10$
$x_{1}, x_{2} \geq 0$
26. Show that the operation * given by $x^{*} y=x+y+-x y$ is a binary oeration on Z,Q and R but not on N .

- Watch Video Solution

27. Examine consistency and solvability, solve the following equations by matrix method.
$x+2 y+3 z=14$
$2 x-y+5 z=15$
and $2 y+4 z-3 x=13$

- View Text Solution

28. From a survey conducted in a cancer hospital it is found that 10% of the patients were alcoholics, 30% chew gutka and 40% have no specific carcinogenic habits. If cancer strikes 80% of the smokers, 70% of alcoholics, 50% of the non specific, then estimateic the probability that a
cancer patient chosen from any one of the above types, selected at random, chews gutka

- Watch Video Solution

29. From a survey conducted in a cancer hospital it is found that 10% of the patients were alcoholics, 30% chew gutka and 40% have no specific carcinogenic habits. If cancer strikes 80% of the smokers, 70% of alcoholics, 50% of the non specific, then estimateic the probability that a cancer patient chosen from any one of the above types, selected at random, chews gutka

- Watch Video Solution

30. From a survey conducted in a cancer hospital it is found that 10% of the patients were alcoholics, 30% chew gutka and 40% have no specific carcinogenic habits. If cancer strikes 80% of the smokers, 70% of
alcoholics, 50% of the non specific, then estimateic the probability that a cancer patient chosen from any one of the above types, selected at random, chews gutka

- Watch Video Solution

31. From a survey conducted in a cancer hospital. It is found that 10% of the patients were alcoholics, 30% chew gutka and 40% have no specific carcinogenic habits. If cancer strikes 80% of the smokers, 70% of alcoholics, 50% of gutka chewers and 10% of the non-specific, then estimate the probability that a cancer patient chosen from any one of the above types, selected at random,
(iv) has no specific carcinogenic habits.
32. Find the inverse of matix $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ -1 & -2 & -1 \\ 2 & 1 & -1\end{array}\right]$ by elementary transformation method and verify that "AA"^(-)=I'.

- View Text Solution

