đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT PRAKASHAN

VERY SIMILAR TEST 8

Section A

1. Show that $\sin x(1+\cos x), x \in|0, \pi|$ is maximum value at $x=\frac{\pi}{3}$.
(D) Watch Video Solution
2. Integrate $\int\left(2 \sqrt{x}+\frac{3}{\sqrt{x}}\right) d x$.

D Watch Video Solution

3. Find the integrating factor of $x \frac{d y}{d x}+2 y=x \cos x$.

- Watch Video Solution

4. Find the value of $\hat{i} .(\hat{j} \times \hat{k})+\hat{j} .(\hat{k} \times \hat{i})+\hat{k} .(\hat{i} \times \hat{j})$.

(D) Watch Video Solution

5. Find the number of points (x, y, z) in space other than the point (1,-2, 3), such that $|x|=1,|y|=2$ and $|z|=3$.

(D) Watch Video Solution

6. If $\mathrm{F}: \mathrm{R} \rightarrow \mathrm{R}$ is given by $\mathrm{f}(\mathrm{x})=\left(3-x^{3}\right)^{1 / 3}$ then find (fof) x.

D Watch Video Solution
7. Write the principal value of $\tan ^{-1}\left[\sin \left(-\frac{\pi}{2}\right)\right]$.

D Watch Video Solution

8. If ω is a complex cube root of 1 ,then for what value of.
lamda the determinant $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \lambda & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|=0$?
9. A die is thrown thrice, getting an even number is considered a success. What is the mean and variance of the Binomial distribution?
(Watch Video Solution
10. If $x=a \cos \theta, y=a \sin \theta$, then find $\frac{d y}{d x}$.

Watch Video Solution

11. Show that $\sin x(1+\cos x), x \in|0, \pi|$ is maximum value at $x=\frac{\pi}{3}$.
12. Integrate $\int\left(2 \sqrt{x}+\frac{3}{\sqrt{x}}\right) d x$.

- Watch Video Solution

13. Find the integrating factor of $x \frac{d y}{d x}+2 y=x \cos x$.

- Watch Video Solution

14. Find the value of $\hat{i} .(\hat{j} \times \hat{k})+\hat{j} .(\hat{k} \times \hat{i})+\hat{k} .(\hat{i} \times \hat{j})$
15. Find the number of points (x, y, z) in space other than the point $(1,-2,3)$, such that $|x|=1,|y|=2$ and $|z|=3$.

- Watch Video Solution

16. If $\mathrm{F}: \mathrm{R} \rightarrow \mathrm{R}$ is given by $\mathrm{f}(\mathrm{x})=\left(3-x^{3}\right)^{1 / 3}$ then find (fof
) x.

- Watch Video Solution

17. Write the principal value of $\tan ^{-1}\left[\sin \left(-\frac{\pi}{2}\right)\right]$.

- Watch Video Solution

18. If ω is a complex cube root of 1 ,then for what value of.
lamda the determinant $\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \lambda & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|=0$?

- Watch Video Solution

19. A die is thrown thrice, getting an even number is considered a success. What is the mean and variance of the Binomial distribution?
20. If $x=a \cos \theta, y=a \sin \theta$, then find $\frac{d y}{d x}$.
21. Solve for x,
$\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{\pi}{3},-1<x<1$

D Watch Video Solution

2. Corner points of the feasible region determined by the system of linear constraints are $(0,3),(1,1)$ and $(3,0)$. Let $Z=p x+q y$, where $p, q>0$.

Find the condition in p and q, so that the minimum of Z occurs at $(3,0)$ and $(1,1)$.
3. Let R be a relation on the set A of ordered pairs of positive integers defined by $(x, y) R(u, v)$, if and only if $x v=$ yu. Show that R is an equivalence relation.

- Watch Video Solution

4. Show that the function $f: R \rightarrow R$ defined by $f(x)=\frac{x}{x^{2}+1}$ is neither one-one nor onto.

D Watch Video Solution

5. If $\cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1} \gamma=3 \pi$, then find $\alpha(\beta+\gamma)+\beta(\gamma+\alpha)+\gamma(\alpha+\beta)$.

D Watch Video Solution

6. Sita and Gita throw a dia alternatively till one of them gets a 6 to win the game. Find their respective probability of winning if Sita starts first.

D Watch Video Solution

7. If A and B are matrices of the same order and $A B=B A$, Then prove that $A^{2}-B^{2}=(A-B)(A+B)$
8. If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$, and, $C\left(x_{3}, y_{3}\right)$ are vertices of an equilateral triangle whose each side is equal to a, then
prove that $\left|\begin{array}{lll}x_{1} & y_{1} & 2 \\ x_{2} & y_{2} & 2 \\ x_{3} & y_{3} & 2\end{array}\right|^{2}=3 a^{4}$.

- Watch Video Solution

9. If you throw a pair of dice n times, find the probability of getting at least one doublet.[When you get identical members you call it a doublet. You can get a double in six ways: $(1,1),(2,2),(3,3),(4,4),(5,5)$ and (6,6) , thus the probability of getting a doublet is $\frac{6}{36}=\frac{1}{6}$, so that the probability of not getting a doublet in one throw is $\left.\frac{5}{6}\right]$.
10. Find the points on the curve $y=x^{3}-3 x^{2}+2 x$ at which the tangent to the curve is parallel to the line $y-2 x+3=0$.

- View Text Solution

11. Find the interval(s) in which the following functions are
(i) increasing
(ii) decreasing
$f(x)=(x+2) e^{-x}$
12. If $\sqrt{1-x^{4}}+\sqrt{1-y^{4}}=k\left(x^{2}-y^{2}\right)$ then show that
$\frac{d y}{d x}=\frac{x \sqrt{1-y^{4}}}{y \sqrt{1-x^{4}}}$

(Watch Video Solution

13. If $y=(\sin x)^{x}+\sin ^{-1} \sqrt{x}$, then find $\frac{d y}{d x}$.

(Watch Video Solution

14. Examine if Rolle.s theorem is applicable to the function
$f(x)=\cot x$ on $[0, \pi]$.

D View Text Solution
15. Find the differential equation for the family of curve $y=a \sin ^{-1} x+b \cos ^{-1} x$.

- Watch Video Solution

16. Obtain the general solution of the following differential equations.
$x^{2} \sqrt{y^{2}+3} d x+y \sqrt{x^{3}+1} d y=0$

- Watch Video Solution

17. Evaluate the following integrals :
$\int \frac{(3 \sin \phi-2) \cos \phi}{5-\cos ^{2} \phi-4 \sin \phi} d \phi$
18. Prove that $\int_{0}^{\pi / 4} 2 \tan ^{3} x d x=1-\log 2$.

Watch Video Solution

19. Find the area of the region included between the parabola $y^{2}=2 x$ and the straight line $x-y=4$.

- Watch Video Solution

20. Find the vector equation of the plane through the points (2,1, -1) and ($-1,3,4$) and .. perpendicular to the plane $x-2 y+4 z=10$.
21.

Prove

$\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$ and hence prove that
$\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a}), \vec{c} \times(\vec{a} \times \vec{b}) \quad$ are
coplanar.

- Watch Video Solution

22. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq \overrightarrow{0}$, prove that $\vec{a}+\vec{c}=m \vec{b}$, where m is a scalar.
23. Find the shortest distance between the lines

$$
\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} \text { and } \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}
$$

D Watch Video Solution

24. Solve for x,
$\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{\pi}{3},-1<x<1$

(D) Watch Video Solution

25. Corner points of the feasible region determined by the system of linear constraints are (0,3), (1,1) and (3,0). Let $Z=p x+q y$, where $p, q>0$.

Find the condition in p and q, so that the minimum of Z occurs at $(3,0)$ and $(1,1)$.

(Watch Video Solution

26. Let R be a relation on the set A of ordered pairs of positive integers defined by $(x, y) R(u, v)$, if and only if $x v=$ yu. Show that R is an equivalence relation.

- Watch Video Solution

27. Show that the function $f: R \rightarrow R$ defined by
$f(x)=\frac{x}{x^{2}+1}$ is neither one-one nor onto.
28. If $\cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1} \gamma=3 \pi$, then find $\alpha(\beta+\gamma)+\beta(\gamma+\alpha)+\gamma(\alpha+\beta)$.

- Watch Video Solution

29. Sita and Gita throw a dia alternatively till one of them gets a 6 to win the game. Find their respective probability of winning if Sita starts first.

- Watch Video Solution

30. If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$, and, $C\left(x_{3}, y_{3}\right)$ are vertices of an equilateral triangle whose each side is equal to a, then
prove that $\left|\begin{array}{lll}x_{1} & y_{1} & 2 \\ x_{2} & y_{2} & 2 \\ x_{3} & y_{3} & 2\end{array}\right|^{2}=3 a^{4}$.
31. If you throw a pair of dice n times, find the probability of getting atleast one doublet.

- Watch Video Solution

32. Find the points on the curve $y=x^{3}-3 x^{2}+2 x$ at which the tangents to the curve is parallel to the line $y-2 x+3=0$.

- Watch Video Solution

33. Find the interval(s) in which the following functions are
(i) increasing
(ii) decreasing
$f(x)=(x+2) e^{-x}$

(Watch Video Solution

34. If $\sqrt{1-x^{4}}+\sqrt{1-y^{4}}=k\left(x^{2}-y^{2}\right)$ then show that $\frac{d y}{d x}=\frac{x \sqrt{1-y^{4}}}{y \sqrt{1-x^{4}}}$

D Watch Video Solution

35. If $y=(\sin x)^{x}+\sin ^{-1} \sqrt{x}$, then find $\frac{d y}{d x}$.
36. Examine if Rolle's theorem is applicable to the function
$f(x)=\cot x$ on $[0, \pi]$.

D View Text Solution

37. Find the differential equation for the family of curve $y=a \sin ^{-1} x+b \cos ^{-1} x$.

D Watch Video Solution

38. Obtain the general solution of the following differential equations.
$x^{2} \sqrt{y^{2}+3} d x+y \sqrt{x^{3}+1} d y=0$
39. Evaluate the following integrals:
$\int \frac{(3 \sin \phi-2) \cos \phi}{5-\cos ^{2} \phi-4 \sin \phi} d \phi$

D Watch Video Solution

40. Prove that $\int_{0}^{\pi / 4} 2 \tan ^{3} x d x=1-\log 2$.

D Watch Video Solution

41. Find the area of the region included between the parabola $y^{2}=2 x$ and the straight line $x-y=4$.
42. Find the vector equation of the plane through the points (2,1, -1) and ($-1,3,4$) and .. perpendicular to the plane $x-2 y+4 z=10$.

D Watch Video Solution

43.

Prove
that
$\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$ and hence prove that
$\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a}), \vec{c} \times(\vec{a} \times \vec{b}) \quad$ are coplanar.
44. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq \overrightarrow{0}$, prove that $\vec{a}+\vec{c}=m \vec{b}$, where m is a scalar.

D Watch Video Solution

45. Find the shortest distance between the lines
$\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$ and $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$.

(Watch Video Solution

Section C

1. If $y=\left[x+\sqrt{x^{2}+a^{2}}\right]^{n}$, then prove that $\frac{d y}{d x}=\frac{n y}{\sqrt{x^{2}+a^{2}}}$

- Watch Video Solution

2. Show that the right circular cone of least curved surface area and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.

- Watch Video Solution

3. Find the area bounded by the curve $y=\sin x$ between $x=$ 0 and $x=2 \pi$.
4. Find the particular solution of the differential equation
$\left(1-y^{2}\right)(1+\log |x|) d x+2 \times d y=0$, given $y=0$, when $x=1$.

D View Text Solution

5. Evaluate $\int \frac{1}{\left(x^{2}-4\right) \sqrt{x+1}} d x$

- View Text Solution

6. Answer any three questions

Find the coordinates of the point, where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the XY-plane.
7. Find the equation of the two lines through the origin which intersect the line $\frac{x-3}{2}-\frac{y-3}{1}=\frac{z}{1}$ at angle of $\frac{\pi}{3}$ each.

- View Text Solution

8. If $a, b, c>0$ such that $a+b+c=a b c$ find the value of $\tan ^{-1} a+\tan ^{-1} b+\tan ^{-1} c$.

- Watch Video Solution

9. Solve the following LPP graphically.

Maximize $Z=10 x+6 y$

Subjectto $3 x+y \leq 12$
$2 x+5 y \leq 34$
$x, y>0$

- View Text Solution

10. Show the $f: R-\{-1) \rightarrow R-\{1\}$ given by
$f(x)=\frac{x}{x-1}$ is invertible. Also find f^{-1}.

- Watch Video Solution

11. Show the following system of equations is consistent
$2 x-y+3 z=5,3 x+2 y-z=7,4 x+5 y-5 z=9$,
Also, find the solution.
12. If A and B are two independent events such that $P(\bar{A} \cap B)=\frac{2}{15}$ and $P(A \cap \bar{B})=\frac{1}{6}$ then find $P(A)$ and $P(B)$

- Watch Video Solution

13. Find the inverse of the matrix $A=\left|\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right|$ by using row transformations.

- View Text Solution

14. If $y=\left[x+\sqrt{x^{2}+a^{2}}\right]^{n}$, then prove that $\frac{d y}{d x}=\frac{n y}{\sqrt{x^{2}+a^{2}}}$
15. Find the area bounded by the curve $y=\sin x$ between $x=$ 0 and $x=2 \pi$.

- Watch Video Solution

16. Find the particular solution of the differential equation
$\left(1-y^{2}\right)(1+\log |x|) d x+2 \times d y=0$, given $y=0$, when $x=1$.

- View Text Solution

17. Evaluate $\int \frac{1}{\left(x^{2}-4\right) \sqrt{x+1}} d x$

- View Text Solution

18. Answer any three questions

Find the coordinates of the point, where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the XY-plane.

- Watch Video Solution

19. Find the equation of the two lines through the origin which intersect the line $\frac{x-3}{2}-\frac{y-3}{1}=\frac{z}{1}$ at angle of $\frac{\pi}{3}$ each.
20. If $a, b, c>0$ such that $a+b+c=a b c$ find the value of $\tan ^{-1} a+\tan ^{-1} b+\tan ^{-1} c$.

D Watch Video Solution

21. Solve the following LPP graphically.

Maximize $Z=10 x+6 y$

Subjectto $3 x+y \leq 12$
$2 x+5 y \leq 34$
$x, y>0$

- View Text Solution

22. Show the $f: R-\{-1) \rightarrow R-\{1\}$ given by $f(x)=\frac{x}{x-1}$ is invertible. Also find f^{-1}.

- Watch Video Solution

23. Show the following system of equations is consistent $2 x-y+3 z=5,3 x+2 y-z=7,4 x+5 y-5 z=9$,

Also, find the solution.

- View Text Solution

24. If A and B are two independent events such that $P(\bar{A} \cap B)=\frac{2}{15}$ and $P(A \cap \bar{B})=\frac{1}{6}$ then find $\mathrm{P}(\mathrm{A})$ and P(B)
25. Find the inverse of the matrix $A=\left|\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right|$ by using row transformations.

- View Text Solution

