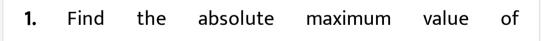


MATHS

BOOKS - ARIHANT PRAKASHAN

VERY SIMILAR TEST 9

Section A



 $f(x) = 2x^3 - 24x + 107$ in the interval [1, 3].

2. Evaluate
$$\int \sin^2 x dx$$

Watch Video Solution

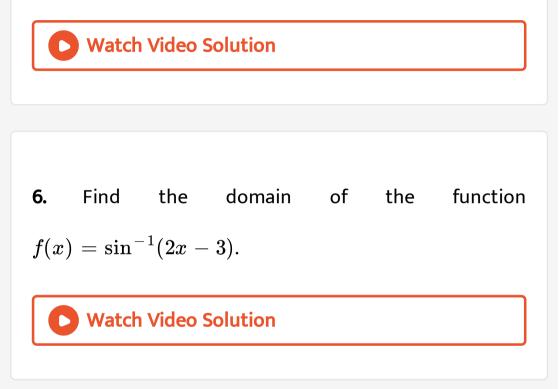
3. Show that
$$y = cx + \frac{a}{c}$$
 is a solution of the differential equation $y = x \frac{dy}{dx} + \frac{a}{\frac{dy}{dx}}$.

Watch Video Solution

4. Find
$$\overrightarrow{a} imes \overrightarrow{b}$$
, if $\overrightarrow{a} = 2\hat{i} + \hat{k}$ and $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$

5. Find the vector equation of the plane whose Cartesian

from of equation is 3x - 4y + 2z = 5



7. Without expanding show that

$$egin{array}{c|c} 1 & a & b+c \ 1 & b & c+a \ 1 & c & a+b \end{array}
ight| = 0$$

8. Events E and F are independent. Find P(F), if P(E) = 0.35 and $P(E \cup F) = 0.6$.

Watch Video Solution

9. Show that
$$f(x)=egin{cases} 5x-4 & when & 0< x\leq 1\ 4x^2-3x & when & 1< x<2 \end{cases}$$
 is continuous at $x=1.$

Watch Video Solution

10. Find the absolute maximum and minimum values of $f(x) = 2x^3 - 24x + 57$ in the interval [1, 3].

11. Evaluate
$$\int \sin^2 x dx$$

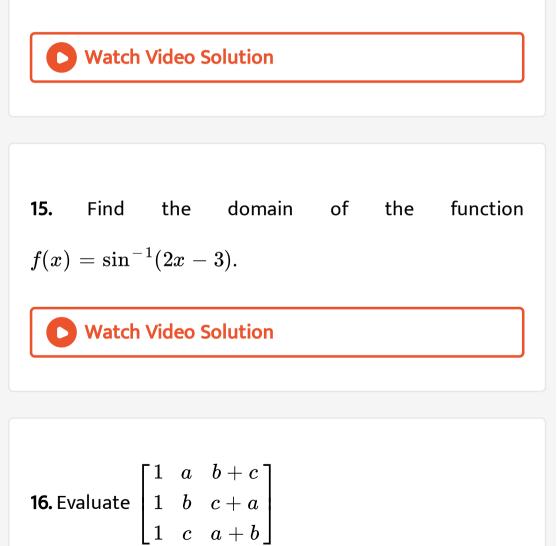
Watch Video Solution

12. Show that
$$y = cx + \frac{a}{c}$$
 is a solution of the differential equation $y = x \frac{dy}{dx} + \frac{a}{\frac{dy}{dx}}$.

Watch Video Solution

13. Find $\overrightarrow{a} imes \overrightarrow{b}$, if $\overrightarrow{a} = 2\hat{i} + \hat{k}$ and $\overrightarrow{b} = \hat{i} + \hat{j} + \hat{k}$

14. Find the vector equation of the plane whose Cartesian from of equation is 3x - 4y + 2z = 5



17. Events E and F are independent. Find P(F), if P(E) = 0.35 and $P(E \cup F) = 0.6$.

Watch Video Solution

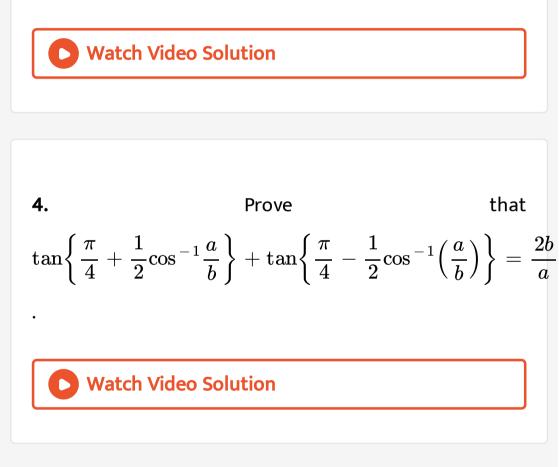
18. Show that
$$f(x) = egin{cases} 5x-4 & when & 0 < x \leq 1 \ 4x^2-3x & when & 1 < x < 2 \end{cases}$$
 is continuous at $x=1.$

1. If $\sin\left\{\cot^{-1}(x+1)
ight\} = \cos\left(\tan^{-1}x
ight)$, then find x.

Watch Video Solution

2. One kind of cake requires 200 g of flour and 25 g of fat and another kind of cake requires 100 g of flour and 50 g of fat. The maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes, formulate the problem as LPP.

3. Let R be a relation on the set A of ordered pairs of positive integers defined by (x, y) R (u, v), if and only if xv = yu. Show that R is an equivalence relation.



5. Two persons A and B throw a die alternately till one of them gets a three and wins the game, Find their respective probabilities of winning, if A begins.

6.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 and $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then show that $A^2 = B^2 = C^2 = I^2$

7. Prove that
$$\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$$

8. An urn contains 4 white and 6 red balls. Four balls are drawn at random from the urn. Find the probability distribution of the number of white balls.

9. Using differentials, find the approximate value of $(3.68)^{3/2}$.

10. Prove that: $y = rac{4\sin heta}{2+\cos heta} - heta$ is an increasing function in [0,pi/2]`

Watch Video Solution

11. If
$$xy\log(x+y)=1$$
, then prove that

$$rac{dy}{dx}= \ - \ rac{yig(x^2y+x+yig)}{x(xy^2+x+y)} \, ,$$

Watch Video Solution

12. If
$$\sin 2x = rac{2t}{1+t^2}, an y = rac{2t}{1-t^2}$$
 then find $rac{dy}{dx}$.

13. Solve
$$rac{dy}{dx} + y = \cos x - \sin x.$$

14. Find the equation of the curve passing through the point (1,1) whose differential equation is $xdy = (2x^2 + 1)dx, x \neq 0.$

Watch Video Solution

15. Evaluate
$$\int rac{x^2}{x^4-x^2+12} dx.$$

16. Evaluate the following integrals :

Evaluate
$$\int_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}$$

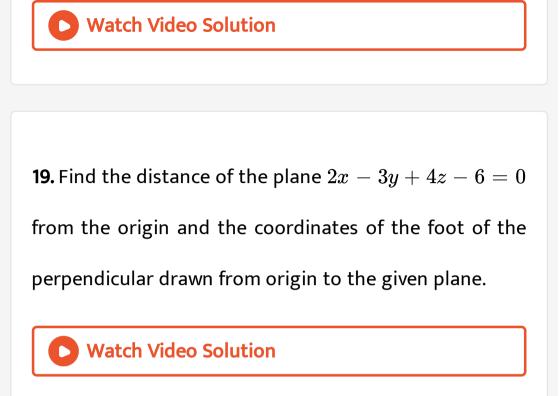
Watch Video Solution

17. Find the area bounded by the curve y=xert xert, X-axis

and ordinates x = -3 and x = 3.

Watch Video Solution

18. The plane lx + my = 0 is rotated about its line of intersection with the plane z=0 through angle measure alpha. Prove that the equation of the plane in new position is $lx + my \pm z\sqrt{l^2 + m^2} \tan \alpha = 0$



20. Prove that
$$\left|\overrightarrow{a}\times\overrightarrow{b}\right|^2 = \left|\overrightarrow{a}\right|^2 \left|\overrightarrow{b}\right|^2 - \left(\overrightarrow{a}\cdot\overrightarrow{b}\right)^2$$

21. Find the vector equation of a plane which is at a distance of 6 units from the origin and has 2, -1, 2 as the direction ratios of a normal to it. Also, find the coordinates of the foot of the normal drawn from the origin.

22. If
$$\sin\left\{\cot^{-1}(x+1)\right\} = \cos\left(\tan^{-1}x\right)$$
, then find x .

23. One kind of cake requires 200 g of flour and 25 g of fat and another kind of cake requires 100 g of flour and 50 g of fat. The maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes, formulate the problem as LPP.

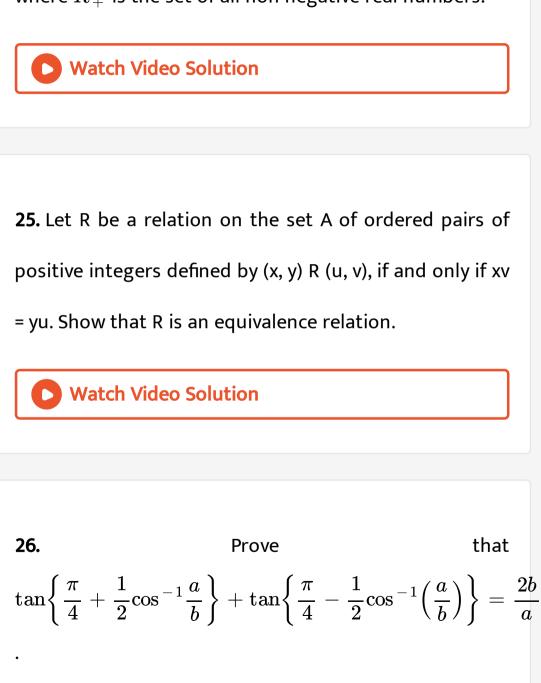
Watch Video Solution

24. Consider $f\!:\!R_+
ightarrow [\,-5,\infty)$ given by

 $f(x)=9x^2+6x-5.$ Show that f is invertible with $f^{-1}(y)=igg(rac{\sqrt{y+6}-1}{3}igg).$ Hence. Find

$$(i)f^{-1}(10) \qquad (ii)y \;\; ext{if}\;\; f^{-1}(y) = rac{4}{3}$$

where R_+ is the set of all non-negative real numbers.



27. Two persons A and B throw a die alternately till one of them gets a three and wins the game, Find their respective probabilities of winning, if A begins.

28.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 and $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then show that $A^2 = B^2 = C^2 = I^2$

29. Prove that
$$\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$$

30. An urn contains 4 white and 6 red balls. Four balls are drawn at random from the urn. Find the probability distribution of the number of white balls.

Watch Video Solution

31. Using differentials, find approximate value

 $(3.968)^{3/2}$

32. Prove that:
$$y = \frac{4\sin\theta}{2+\cos\theta} - \theta$$
 is an increasing function in [0 pi/2])

function in [0,pi/2]`

Watch Video Solution

33. If
$$xy\log(x+y)=1$$
, then prove that

$$rac{dy}{dx}=\,-\,rac{yig(x^2y+x+yig)}{x(xy^2+x+y)}.$$

34. If
$$\sin 2x = rac{2t}{1+t^2}$$
, $an y = rac{2t}{1-t^2}$ then find $rac{dy}{dx}$.

35. Using mean value theorem, prove that sin $x < x, \in (0. \pi/2).$

Watch Video Solution

36. Solve
$$rac{dy}{dx} + y = \cos x - \sin x$$

Watch Video Solution

37. Find the equation of the curve passing through the point (1,1) whose differential equation is $xdy = ig(2x^2+1ig)dx, x
eq 0.$

38. Evaluate
$$\int rac{x^2}{x^4-x^2+12} dx.$$

Watch Video Solution

39. Evaluate
$$\int_0^{\pi/2} \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx.$$

40. Find the area bounded by the curve y = x |x|, X-axis

and ordinates x = -3 and x = 3.

41. The plane lx + my = 0 is rotated about its line of intersection with the plane z=0 through angle measure alpha. Prove that the equation of the plane in new position is $lx + my \pm z\sqrt{l^2 + m^2} \tan \alpha = 0$

42. Find the distance of the plane 2x - 3y + 4z - 6 = 0 from the origin and the coordinates of the foot of the perpendicular drawn from origin to the given plane.

43. Prove that
$$\left|\overrightarrow{a} \times \overrightarrow{b}\right|^2 = \left|\overrightarrow{a}\right|^2 \left|\overrightarrow{b}\right|^2 - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)^2$$

44. Find the cartesian equation of a plane which is at a distance of 6 units from the origin and which has a normal with direction ratios (2, -1, -2).

1. If
$$e^x + e^y = e^{x+y}$$
, then prove that
 $\frac{dy}{dx} = \frac{e^x(e^y - 1)}{e^y(e^x - 1)}$ or $\frac{dy}{dx} + e^{y-x} = 0.$
Watch Video Solution

2. Find a point on the curve $f(x)=(x-3)^2$, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1).

3. Find the area of the region included between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, where a > 0.

4. Solve
$$rac{dy}{dx} = y \sin 2x : y(0) = 1.$$

Watch Video Solution

5. Evaluate
$$\int \frac{1}{\sin x (2\cos^2 x - 1)} dx$$
.

Watch Video Solution

6. Prove analytically : The perpendicular bisector of the

sides of a triangle are concurrent.

7. Find the foot of the perpendicular drawn from the

point
$$2\hat{i}-\hat{j}+5\hat{k}$$
 to the line

$$\overrightarrow{r}=\Big(11\hat{i}-2\hat{j}-8\hat{k}\Big)+\lambda\Big(10\hat{i}-4\hat{j}-11\hat{k}\Big).$$
 Also,

find the length of the perpendicular.

8. Solve the following LPP graphically.

Maximise Z = 5x + 3y

Subject to 3x + 5y = 15

5x + 2y le 10

and x, y ge 0

9. Let f:N o R be a function defined as $f(x)=4x^2+12x+15$. Show that f:N o S, where S is the range of f, is invertible. Also, find the inverse of f.

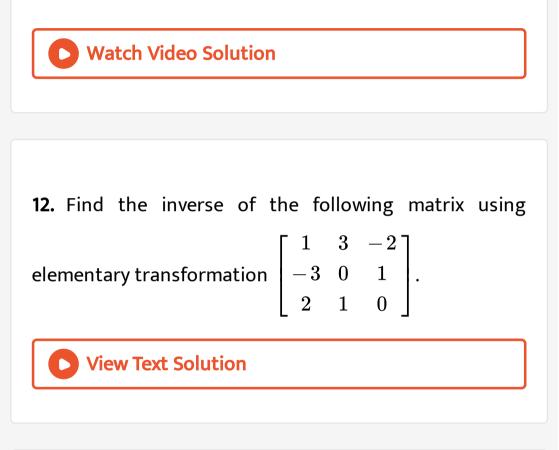
> Watch Video Solution

10. If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
, find A^{-1} and hence solve
the system of linear equations $x + 2y + z = 4$,
 $-x + y + z = 0, x - 3y + z = 2$.

View Text Solution

11. A dice is thrown thrice. Find the probability of getting

an odd number atleast once.



13. If
$$e^x + e^y = e^{x+y}$$
, then prove that $rac{dy}{dx} = rac{e^x(e^y-1)}{e^y(e^x-1)}$ or $rac{dy}{dx} + e^{y-x} = 0.$

Match Video Colution

14. Find a point on the curve $f(x)=(x-3)^2$, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1).

15. Find the area of the region included between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, where a > 0.

16. Solve
$$rac{dy}{dx} = y \sin 2x \cdot y(0) = 1.$$

17. Evaluate
$$\int rac{1}{\sin x (2\cos^2 x - 1)} dx.$$

Watch Video Solution

18. Prove analytically : The perpendicular bisector of the

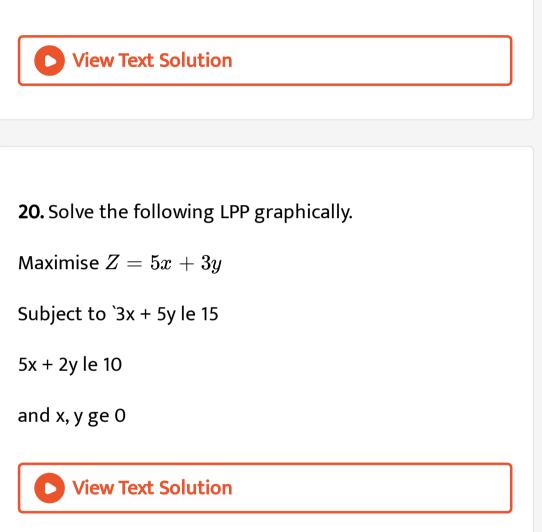
sides of a triangle are concurrent.

19. Find the foot of the perpendicular drawn from the

point $2\hat{i}-\hat{j}+5\hat{k}$ to the line

$$\overrightarrow{r}=\Big(11\hat{i}-2\hat{j}-8\hat{k}\Big)+\lambda\Big(10\hat{i}-4\hat{j}-11\hat{k}\Big).$$
 Also,

find the length of the perpendicular.



21. Let f:N o R be a function defined as $f(x)=4x^2+12x+15$. Show that f:N o S, where S is the range of f, is invertible. Also, find the inverse of f.

Watch Video Solution

22. If
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
, find A^{-1} and hence solve the system of linear equations $x + 2y + z = 4$, $-x + y + z = 0, x - 3y + z = 2$.

View Text Solution

23. A die is tossed thrice. Find the probability of getting

an even number atleast once.

