©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT PRAKASHAN

VERY SIMILAR TEST 9

Section A

1. Find the absolute maximum value of $f(x)=2 x^{3}-24 x+107$ in the interval [1, 3].
2. Evaluate $\int \sin ^{2} x d x$

- Watch Video Solution

3. Show that $y=c x+\frac{a}{c}$ is a solution of the differential equation $y=x \frac{d y}{d x}+\frac{a}{\frac{d y}{d x}}$.

- Watch Video Solution

4. Find $\vec{a} \times \vec{b}$, if $\vec{a}=2 \hat{i}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

5. Find the vector equation of the plane whose Cartesian

 from of equation is $3 x-4 y+2 z=5$
- Watch Video Solution

6. Find the domain of the function
$f(x)=\sin ^{-1}(2 x-3)$.

- Watch Video Solution

7. Without expanding show that
$\left|\begin{array}{ccc}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|=0$
8. Events E and F are independent. Find $P(F)$, if $P(E)=0.35$ and $P(E \cup F)=0.6$.

- Watch Video Solution

9. Show that $f(x)=\left\{\begin{array}{lll}5 x-4 & \text { when } & 0<x \leq 1 \\ 4 x^{2}-3 x & \text { when } & 1<x<2\end{array}\right.$ is continuous at $x=1$.

D Watch Video Solution

10. Find the absolute maximum and minimum values of $f(x)=2 x^{3}-24 x+57$ in the interval $[1,3]$.

- Watch Video Solution

11. Evaluate $\int \sin ^{2} x d x$

- Watch Video Solution

12. Show that $y=c x+\frac{a}{c}$ is a solution of the differential equation $y=x \frac{d y}{d x}+\frac{a}{\frac{d y}{d x}}$.

D Watch Video Solution

13. Find $\vec{a} \times \vec{b}$, if $\vec{a}=2 \hat{i}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$
14. Find the vector equation of the plane whose Cartesian from of equation is $3 x-4 y+2 z=5$

D Watch Video Solution

15. Find the domain of the function
$f(x)=\sin ^{-1}(2 x-3)$.

- Watch Video Solution

16. Evaluate $\left[\begin{array}{ccc}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right]$
17. Events E and F are independent. Find $P(F)$, if $P(E)=0.35$ and $P(E \cup F)=0.6$.

- Watch Video Solution

18. Show that $f(x)=\left\{\begin{array}{lll}5 x-4 & \text { when } & 0<x \leq 1 \\ 4 x^{2}-3 x & \text { when } & 1<x<2\end{array}\right.$ is continuous at $x=1$.

- Watch Video Solution

1. If $\sin \left\{\cot ^{-1}(x+1)\right\}=\cos \left(\tan ^{-1} x\right)$, then find x.

D Watch Video Solution

2. One kind of cake requires 200 g of flour and 25 g of
fat and another kind of cake requires 100 g of flour and
50 g of fat. The maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes, formulate the problem as LPP.
3. Let R be a relation on the set A of ordered pairs of positive integers defined by $(x, y) R(u, v)$, if and only if $x v$
$=y u$. Show that R is an equivalence relation.

- Watch Video Solution

> Prove $\tan \left\{\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right\}+\tan \left\{\frac{\pi}{4}-\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right\}=\frac{2 b}{a}$

- Watch Video Solution

5. Two persons A and B throw a die alternately till one of them gets a three and wins the game, Find their respective probabilities of winning, if A begins.

(D) Watch Video Solution

6. $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and $C=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then show that $A^{2}=B^{2}=C^{2}=I^{2}$

D Watch Video Solution

7. Prove that $\left|\begin{array}{lll}b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|$
8. An urn contains 4 white and 6 red balls. Four balls are drawn at random from the urn. Find the probability distribution of the number of white balls.

D Watch Video Solution

9. Using differentials, find the approximate value of $(3.68)^{3 / 2}$.

- Watch Video Solution

10. Prove that: $y=\frac{4 \sin \theta}{2+\cos \theta}-\theta$ is an increasing function in $[0, \mathrm{pi} / 2]^{`}$

- Watch Video Solution

11. If $x y \log (x+y)=1$, then prove that
$\frac{d y}{d x}=-\frac{y\left(x^{2} y+x+y\right)}{x\left(x y^{2}+x+y\right)}$.

- Watch Video Solution

12. If $\sin 2 x=\frac{2 t}{1+t^{2}}, \tan y=\frac{2 t}{1-t^{2}}$ then find $\frac{d y}{d x}$.
13. Solve $\frac{d y}{d x}+y=\cos x-\sin x$.

- Watch Video Solution

14. Find the equation of the curve passing through the point $(1,1)$ whose differential equation is $x d y=\left(2 x^{2}+1\right) d x, x \neq 0$.

- Watch Video Solution

15. Evaluate $\int \frac{x^{2}}{x^{4}-x^{2}+12} d x$.
16. Evaluate the following integrals :

Evaluate $\int_{0}^{\pi / 2} \frac{x \sin x \cos x}{\sin ^{4} x+\cos ^{4} x}$

D Watch Video Solution

17. Find the area bounded by the curve $y=x|x|, X$-axis and ordinates $x=-3$ and $x=3$.

(D) Watch Video Solution

18. The plane $l x+m y=0$ is rotated about its line of intersection with the plane $\mathrm{z}=0$ through angle measure alpha. Prove that the equation of the plane in new position is $l x+m y \pm z \sqrt{l^{2}+m^{2}} \tan \alpha=0$

D Watch Video Solution

19. Find the distance of the plane $2 x-3 y+4 z-6=0$
from the origin and the coordinates of the foot of the perpendicular drawn from origin to the given plane.

- Watch Video Solution

20. Prove that $|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$

- Watch Video Solution

21. Find the vector equation of a plane which is at a distance of 6 units from the origin and has $2,-1,2$ as the direction ratios of a normal to it. Also, find the coordinates of the foot of the normal drawn from the origin.

- View Text Solution

22. If $\sin \left\{\cot ^{-1}(x+1)\right\}=\cos \left(\tan ^{-1} x\right)$, then find x.

- Watch Video Solution

23. One kind of cake requires 200 g of flour and 25 g of
fat and another kind of cake requires 100 g of flour and
50 g of fat. The maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes, formulate the problem as LPP.

- Watch Video Solution

24. Consider $f: R_{+} \rightarrow[-5, \infty)$ given by
$f(x)=9 x^{2}+6 x-5$. Show that f is invertible with
$f^{-1}(y)=\left(\frac{\sqrt{y+6}-1}{3}\right)$. Hence. Find

$$
(i) f^{-1}(10) \quad(i i) y \text { if } f^{-1}(y)=\frac{4}{3}
$$

where R_{+}is the set of all non-negative real numbers.

- Watch Video Solution

25. Let R be a relation on the set A of ordered pairs of positive integers defined by (x, y) $R(u, v)$, if and only if $x v$
$=y u$. Show that R is an equivalence relation.

- Watch Video Solution

26.

Prove

that
$\tan \left\{\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right\}+\tan \left\{\frac{\pi}{4}-\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right\}=\frac{2 b}{a}$

- Watch Video Solution

27. Two persons A and B throw a die alternately till one of them gets a three and wins the game, Find their respective probabilities of winning, if A begins.

- Watch Video Solution

28. $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and $C=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then show that $A^{2}=B^{2}=C^{2}=I^{2}$
29. Prove that $\left|\begin{array}{lll}b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|$

- Watch Video Solution

30. An urn contains 4 white and 6 red balls. Four balls are drawn at random from the urn. Find the probability distribution of the number of white balls.

D Watch Video Solution

31. Using differentials, find approximate value $(3.968)^{3 / 2}$
32. Prove that: $y=\frac{4 \sin \theta}{2+\cos \theta}-\theta$ is an increasing function in [0,pi/2]

- Watch Video Solution

33. If $x y \log (x+y)=1$, then prove that
$\frac{d y}{d x}=-\frac{y\left(x^{2} y+x+y\right)}{x\left(x y^{2}+x+y\right)}$.

- Watch Video Solution

34. If $\sin 2 x=\frac{2 t}{1+t^{2}}, \tan y=\frac{2 t}{1-t^{2}}$ then find $\frac{d y}{d x}$.
35. Using mean value theorem, prove that sin $x<x, \in(0 . \pi / 2)$.

- Watch Video Solution

36. Solve $\frac{d y}{d x}+y=\cos x-\sin x$

- Watch Video Solution

37. Find the equation of the curve passing through the point $(1,1)$ whose differential equation is

$$
x d y=\left(2 x^{2}+1\right) d x, x \neq 0
$$

- Watch Video Solution

38. Evaluate $\int \frac{x^{2}}{x^{4}-x^{2}+12} d x$.

- Watch Video Solution

39. Evaluate $\int_{0}^{\pi / 2} \frac{\sin 2 x}{\sin ^{4} x+\cos ^{4} x} d x$.

- View Text Solution

40. Find the area bounded by the curve $y=x|x|, X$-axis and ordinates $x=-3$ and $x=3$.
41. The plane $l x+m y=0$ is rotated about its line of intersection with the plane $\mathrm{z}=0$ through angle measure alpha. Prove that the equation of the plane in new position is $l x+m y \pm z \sqrt{l^{2}+m^{2}} \tan \alpha=0$

- Watch Video Solution

42. Find the distance of the plane
$2 x-3 y+4 z-6=0$ from the origin and the coordinates of the foot of the perpendicular drawn from origin to the given plane.
43. Prove that $|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}$

- Watch Video Solution

44. Find the cartesian equation of a plane which is at a distance of 6 units from the origin and which has a normal with direction ratios ($2,-1,-2$).

- Watch Video Solution

Section C

1. If $e^{x}+e^{y}=e^{x+y}$, then prove that
$\frac{d y}{d x}=\frac{e^{x}\left(e^{y}-1\right)}{e^{y}\left(e^{x}-1\right)}$ or $\frac{d y}{d x}+e^{y-x}=0$.

D Watch Video Solution

2. Find a point on the curve $f(x)=(x-3)^{2}$, where the tangent is parallel to the chord joining the points $(3,0)$ and (4, 1).

D Watch Video Solution

3. Find the area of the region included between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, where $a>0$.
4. Solve $\frac{d y}{d x}=y \sin 2 x: y(0)=1$.

- Watch Video Solution

5. Evaluate $\int \frac{1}{\sin x\left(2 \cos ^{2} x-1\right)} d x$.

- Watch Video Solution

6. Prove analytically : The perpendicular bisector of the sides of a triangle are concurrent.
7. Find the foot of the perpendicular drawn from the point $2 \hat{i}-\hat{j}+5 \hat{k}$ to the line $\vec{r}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+\lambda(10 \hat{i}-4 \hat{j}-11 \hat{k}) . \quad$ Also, find the length of the perpendicular.

- View Text Solution

8. Solve the following LPP graphically.

Maximise $Z=5 x+3 y$
Subject to $\begin{aligned} & \\ & x\end{aligned}+5 y$ le 15
$5 x+2 y$ le 10
and x , y ge 0
9. Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$, where S is the range of f , is invertible. Also, find the inverse of f .

- Watch Video Solution

10. If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$, find A^{-1} and hence solve
the system of linear equations $x+2 y+z=4$, $-x+y+z=0, x-3 y+z=2$.

- View Text Solution

11. A dice is thrown thrice. Find the probability of getting an odd number atleast once.

- Watch Video Solution

12. Find the inverse of the following matrix using
elementary transformation $\left[\begin{array}{ccc}1 & 3 & -2 \\ -3 & 0 & 1 \\ 2 & 1 & 0\end{array}\right]$.

- View Text Solution

13. If $e^{x}+e^{y}=e^{x+y}$, then prove that
$\frac{d y}{d x}=\frac{e^{x}\left(e^{y}-1\right)}{e^{y}\left(e^{x}-1\right)}$ or $\frac{d y}{d x}+e^{y-x}=0$.
14. Find a point on the curve $\mathrm{f}(\mathrm{x})=(x-3)^{2}$, where the tangent is parallel to the chord joining the points $(3,0)$ and (4,1).

- Watch Video Solution

15. Find the area of the region included between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, where $a>0$.

D Watch Video Solution

16. Solve $\frac{d y}{d x}=y \sin 2 x: y(0)=1$.

D Watch Video Solution

17. Evaluate $\int \frac{1}{\sin x\left(2 \cos ^{2} x-1\right)} d x$.

- Watch Video Solution

18. Prove analytically : The perpendicular bisector of the sides of a triangle are concurrent.

- Watch Video Solution

19. Find the foot of the perpendicular drawn from the point

$$
2 \hat{i}-\hat{j}+5 \hat{k}
$$ to the line

$\vec{r}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+\lambda(10 \hat{i}-4 \hat{j}-11 \hat{k}) . \quad$ Also, find the length of the perpendicular.

- View Text Solution

20. Solve the following LPP graphically.

Maximise $Z=5 x+3 y$
Subject to ` $3 x+5 y$ le 15
$5 x+2 y$ le 10
and x , y ge 0
21. Let $f: N \rightarrow R$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$, where S is the range of f , is invertible. Also, find the inverse of f .

- Watch Video Solution

22. If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$, find A^{-1} and hence solve
the system of linear equations $x+2 y+z=4$, $-x+y+z=0, x-3 y+z=2$.

- View Text Solution

23. A die is tossed thrice. Find the probability of getting an even number atleast once.

- Watch Video Solution

24. Find the inverse of the following matrix using
elementary transformation $\left[\begin{array}{ccc}1 & 3 & -2 \\ -3 & 0 & 1 \\ 2 & 1 & 0\end{array}\right]$.

View Text Solution

