

CHEMISTRY

BOOKS - MODERN PUBLICATION

ELECTROCHEMISTRY

Exercise

1. The electrode potential measure the :

A. Tendency of the electrode to gain or lose electrons

B. Tendency of the cell reaction to occur

C. Difference in the ionisation potential of electrode and metal ion

D. Current carried by an electrode

Answer: A

2. Which is the correct representation for Nernst equation :

A. E_rp = E^o_rp + 0.059/n log [oxidant]/[reductant]

B. E_op = E^o_op + 0.059/n log [oxidant]/[reductant]

C. E_op = E^o_op + 0.059/n log [reductant]/[oxidant]

D. All of these

Answer: D

Watch Video Solution

3. The factor temperature coefficient for emf is :

Α. (ΔΕ/ΔΤ)_p

B. $(\Delta E / \Delta P)_t$

C. $(\Delta E / \Delta V)_t$

D. None

Answer: A

4. The emf of a voltaic cell is negative. So oxidation and reduction process respecttively can be written at the :

A. LHE,RHE

B. RHE,LHE

C. Both(a)and(b)

D. None

Answer: B

5. Silver from silver nitrate is deposited by copper, because :

A. E°
$$(Cu^{2+}/cu)$$
ltE° (Ag^+/Ag)
B. E° (Ag^+/Ag) ltE° (Cu^{2+}/Cu)
C. E° (Cu^{2+}/Cu) -E° (Ag^+/Ag)

D. None

Answer: B

Watch Video Solution

6. Standard reduction potential for,
$$Li^+Li$$
, $Zn^{2+}Zn$, H^+H_2 and Ag^+Ag is -3.05,-0.762,0.00 and +80V.
Which has highest reducing capacity?

A. Ag

 $\mathsf{B}.\,H_2$

 $\mathsf{C}.\,Zn$

D. Li

Answer: D

- 7. Which one is correct:
 - A. Ni displace Zinc from its solution
 - B. Zn displace iron from its solution
 - C. Ag displacecopper from its solution
 - D. Cu displace nickel from its solution

Answer: B

8. An unit of charge is :

A. volt

B. ampere

C. coulomb

D. None

Answer: C

Watch Video Solution

9. The standard reduction potential of some electrodes are, $E^{\circ}(K^+ / K)$)=-2.9 V , $E^{\circ}(Zn^{2+} / Zn)$ =-0.76 V , $E^{\circ}(H^+/H_2)$ =-0.00 V , $E^{\circ}(Cu^{2+} / Cu)$)=+0.34 V.The strongest oxidant is:

A. Copper

B. Zinc

C. Hydrogen

D. Cu^{2+}

Answer: D

Watch Video Solution

10. In galvanic cell, the salt bridge is used to:

A. Complete the circuit

B. To reduce liquid junction potential in the cell

C. Separate cathode solution from anode solution

D. Carry salts for chemical reactions to occur in cell

Answer: B

11. A current of 2 ampere was passed through solution of $CuSO_4$ and $AgNO_3$ in series.`0.635 g of copper was deposited .Then the weight of silver deposited will be:

A. 0.59g

B. 3.24g

C. 1.08g

D. 2.16g

Answer: D

Watch Video Solution

12. The emf of the cell involving following changes $Zn(s) + Ni^{2+}(1M) \rightarrow Zn^{2+}(1M) + Ni(s)is0.5105V$. The standard emf of the cell is :

A. 0.540 V

B. 0.481

C. 0.5696

D. 0.5105

Answer: D Watch Video Solution

13. A current of 2.6 ampere was passed through $CuSO_4$ solution for 380

sec. The amount of Cu deposited is (at .wt. of Cu (63.5):

A. 0.325g

B. 0.635g

C. 6.35g

D. 3.175g

Answer: A

14. E° values of Mg^{2+}/Mg is -2.37V, of Zn^{2+}/Zn is -0.76V and Fe^{2+}/Fe is -0.44V.

Which of the following statement is correct ?

A. Mg oxidises Fe

B. Zn oxidises Fe

C. Zn reduces Mg^{2+}

D. Zn reduces Fe^{2+}

Answer: D

Watch Video Solution

15. On passing electricity through dilute H_2SO_4 solution the amount of

substance liberated at the cathode and anode are in the ratio:

A. 1:8

B. 8:1

C. 16:1

D. 0.05277777777778

Answer: A Watch Video Solution 16. Passage of 96500 coulmb of electricity liberates...... Litre of O_2 at NTP during electrolysis : A. 5.6 B. 6.5 C. 22.2 D. 11.2

Answer: A

17. During electrolysis of an aqueous solution of ${\it Cu}^{2\,+}$ sulphate , 0.635 g

of copper was deposited at cathode. The amount electricity consumed in

coulomb is :

A. 1930

B. 3860

C. 96500

D. 4825

Answer: A

Watch Video Solution

18. The number of electrons involved in redox reactions when 1 faraday of

electricity is passed through an electrolyte in solution is :

A. 6*10^23

B. 8*10^19

C. 96500

D. 6*10^-23

Answer: A

19. If
$$Mg^{2+}+2e
ightarrow Mg(s)$$
, E=-2.37V , $Cu^{2+}+2e
ightarrow Cu(s)$, E=.+0.34V ?

Write the line notation (cell diagram) for the cell and calculate cell emf.

A. 2.71V

B. 2.30V

C. 2.80V

D. 1.46V

Answer: A

20. A certain quantity of electricity is passed through aqueous solution of

 $AgNO_3$ and $CuSO_4$ connected in series, If Ag (at. Wt. 108) deposited at

the cathode is 1.08 g then Cu deposited at the cathode is (at. wt. of Cu is 63.53):

A. 6.354

B. 0.317

C. 0.6354

D. 3.177

Answer: B

Watch Video Solution

21. Which of the following statement is wrong ?

A. Na^+ has different molar cunductance at infinite dilution in Nacl

and NaBr

B. degree of dissociation(alpha)=Y_(c)/Y_(m)

C. Kohlaraush law is used to find value for weak electrolytes

D.
$$(H_2 SO_4) = 2 ig(H^+ SO_4^{-2} ig)$$

Answer: A

22. When same quantity of current is passed through two different electrolytes connected in series, the amount of products liberated at the electrodes are in the ratio of their.

A. atomic mass

B. equivalent mass

C. molecular mass

D. atomic number

Answer: B

23. The unit of electrochemical equivalent is :

A. gm/coulomb

B. gm/ampere

C. coulomb/gm

D. gm/coulomb

Answer: A

Watch Video Solution

24. A current of 0.75A is passed through an acidic $CuSO_4$ for 10 min. the

volume of oxygen liberated at anode at STP will be

A. 0.261cc

B. 26.1cc

C. 52.2cc

D. 0.522cc

Answer: B

Answer: D

26. Which will be decomposed when electric current is passed through its

aqueous solution?

A. glucose

B. urea

C. common salt

D. benzene

Answer: C

Watch Video Solution

27. The degree of dissociation of $CH_3COOHSol^n$, can be increased by

A. adding more CH_3COOH to the solution

B. adding more water to the solution

C. decreasing temerature of the solution

D. stirring the solution vigorusly

Answer: B

28. The limiting molar conductance of NaCl,KBr,KCl are 126,152 and 150 $ohm^{-1}cm^2mo \leq ^{-1}$ respectively. The limiting molar conductance of NaBr is-

A. 120

B. 302

C. 428

D. 176

Answer: A

Watch Video Solution

29. The passage of current through the solution of a certain electrolyte results in the liberation of H_2 at the cathode and Cl_2 gas at anode. The solution in the container could not be

A. Nacl(aq)

B. Kcl(aq)

 $C. CaCl_2(aq)$

D. $MgCl_2(aq)$

Answer: C

Watch Video Solution

30. Which of the following solutions of kcl has the largest value of molar

conductance ?

A. 0.1M

B. 0.01M

C. 0.001M

D. 1M

Answer: C

31. The mass of a substance liberated at the electrode is directly proportional to its-

A. atomic mass

B. equivalent mass

C. molecluar mass

D. none of these

Answer: B

Watch Video Solution

32. Standard electrode potentials are : Fe^{+2}/Fe , $E^{\circ}=-0.44V$, Fe^{+3}/e^{+3}

 $Fe^{2\,+}$, $E^{\,\circ}\,=\,0.77V$. $Fe^{\,+\,2}$, $Fe^{\,+\,3}$ and Fe block are kept together, then

A. Fe^{+3} increases

B. $Fe^{\,+\,3}$ decreases

C. $Fe^{\,+\,2}\,/Fe^{\,+\,3}$ remains unchanged

D. Fe decreases

Answer: B

Watch Video Solution

33. A galvanic cell with electrode potential of zinc = +0.76V and of copper

= 0.34V . The E.M.F is

A. 0.76V

B. 0.34V

C. 1.1V

D. -1.1V

Answer: C

34. The unit of equivalent conductance is

A. $ohm^{-1}cm^2$ (equivalent)

B. $ohmcm^2$ (g-equivalent)

 $C. ohmcm^2$

D. $ohm^{-1}m^{-1}$

Answer: A

Watch Video Solution

35. The standard reduction potential for $Fe^{2+} | Fe$ and $Sn^{2+} | Sn$ electrodes are -0.44V and -0.14V respectively. For the cell reaction, $Fe^{2+} + Sn \rightarrow Fe + Sn^{2+}$, the standard emf is :

A. 0.30V

B. -0.30V

C. 0.58V

D. -0.58V

Answer: A

Watch Video Solution

36. Total charge on 1 mole of a monovalent metal ion is equal to :

A. 9.65 *10^4 coulombs

B. 1.6*10^-19coulombs

C. 6.2*10^18coulombs

D. none of these

Answer: A

37. E° for the half cell reactions are as, $Zn
ightarrow Zn^{2+} + 2e, E^{\circ} = +0.76V$ $Fe o Fe^{2\,+} + 2e, E^{\,\circ} = \,+\,0.41V$ The E° for the cell reaction. $Fe^{2+} + Zn \rightarrow Zn^{2+} + Fe$: A. -120V B. 0.32V C. -0.32V D. 1.20V

Answer: B

38. without losing its concentration $ZnCl_2$ solution can not be kept in contact with

A. Au

 $\mathsf{B}.\,Al$

 $\mathsf{C}.\,Pb$

 $\mathsf{D}.Ag$

Answer: A

Watch Video Solution

39..... grams of chlorine can be prepared by the electrolysis of molten sodium chloride with 10 amperes current passed for 10min.

A. 2.2

B. 4.4

C. 3.8

D. 5

Answer: A

40. The unit of cell constant is

A. $ohm^{-1}cm^2$

B. cm^{-1}

C. $ohm^{-1}cm^{-1}$

D. $ohm^{-(1)}cm^2$ /gm equivalent

Answer: B

Watch Video Solution

41. 96500 Coulomb will deposite of metal.

A. one electrochemical equivalent

B. one gm

C. one gm equivalent

D. one gm molecular mass

Answer: C

42. Which is the strongest reducing agent?

- A. Zn(s)
- B. Cr(s)
- $\mathsf{C}.\,H_2(g)$
- D. $Fe^{2+}(aq)$

Answer: A

43. four alkali metals A, B, C, D are having respectively standard electrode potential as -3.05 v -1.66, 0.8 and - 0.40 v.which one will be more reducing?

A. A B. B C. C D. D

Answer: A

Watch Video Solution

44. Given:

 $Au^{+3}+3e
ightarrow Au$, E° = 1.5 V.

 $Au^+ + e
ightarrow Au$, E° =1.69V The reduction potential for $Au^{+3}\!/Au^+$ is

A. -1.405 V

B. 1.405 V

C. 0.405V

D. 0.469 V

Answer: B

Watch Video Solution

45. Given I/a=0.5 cm^{-1} ,R=50 ohm, N=1.0. The equivalent conductance of

the electrolytic cell is

A. 10 $ohm^{-1}cm^2gmeq^{-1}$

- B. $20 ohm^{-1} cm^2 gmeq^{-1}$
- C. 300 $ohm^{-1}cm^2gmeq^{-1}$
- D. 100 $ohm^{-1}cm^2gmeq^{-1}$

Answer: A

46. Which of the following expression is correct ?

A. ΔG°=-nFE°cell

B. ΔG° =+nFE°cell

C. ΔG°=-2.303 RTnFE°cell

D. ∆G°=-nFlog Kc

Answer: A

Watch Video Solution

47. Two electrochemical cells $Zn|Zn^{+2}||Cu^{+2}|Cu$ and $Fe|Fe^{+2}||Cu^{+2}|Cu$ are connected in series. Write the cell reaction in each case. What will be the net e.m.f of the cell at 25°C given , $Zn^{+2} | Zn$ =-0.76V , $Cu^{+2} | Cu$ =+0.34V, $Fe^{+2} | Fe$ =-0.41V

48. The reduction potential values of M, N and O are +2.46,- 1.13 and 3.13 V respectively. Which of the following order is correct regarding their reducing property?

A. O > N > M

 $\mathsf{B}.\, O>M>N$

 $\mathsf{C}.\,M>N>O$

 $\mathsf{D}.\, N > M > O$

Answer: A

Watch Video Solution

49. The standard electrode potential of a hydrogen electrode is

A. 0.059V

B. 1V

C. 0.5V

D. 0.00V

Answer: C

Watch Video Solution

50.
$$Zn^{2+}(aq) + 2e \rightarrow Zn(s)$$
 $E^{\circ}(Zn^{2+}/Zn) = -$ 0.76V,

 $Ni^{2\,+}\left(aq
ight)+2e
ightarrow Ni(s)~E^{\circ}ig(Ni^{2\,+}$ / Ni) = - 0.25V, E°cell = _____

A. 0.51V

B. -0.51V

C. 1.01V

D. none

Answer: A

51. Electrolytes conduct electricity due to movement of-

A. atoms

B. ions

C. electrons

D. molecules

Answer: B

Watch Video Solution

52. which of the following may not be present in all galvanic cell

A. electrolyte

B. anode

C. cathode

D. salt bridge

Answer: D Watch Video Solution 53. 1F charge will produce 1 mole of metal from the electrolyte A. $MgCl_2$ B. KCl $C. CuSO_4$ D. none of these

Answer: B

Watch Video Solution

54. What amount of electricity is required to deposite 1mole copper from

a solution of $CuSO_4$?

A. 2F

B. 1F

C. 3F

D. 0.5F

Answer: A

Watch Video Solution

55. the metal with greater oxidation potential is

A. strongest oxidant

B. stronger reductant

C. easily reduced

D. can't be predicted

Answer: B
56. The electrolytic products of aqueous solution of NaF are

A. Na , F2

B. Na , O_2

C. H_2 , O_2

D. H_2, F_2

Answer: C

Watch Video Solution

57. The exact value of emf of cell can be measured by means of

A. potentiometer

B. galvanometer

C. polarimeter

D. ammeter

Answer: A

58. The unit of equivalent conductance is

A. ohm

 ${\tt B.} {\it ohm^{-1}cm^2gmeq^{-1}}$

C. $ohm^{-1}cm^{-2}$

D. $ohmcm^{-2}gmeq^{-1}$

Answer: B

59. The charge carried by one mole electron is

A. $1.6 ext{ x } 10^{-19} ext{ coulomb}$

- $\mathrm{B.}\,6.28\,\mathrm{x}\,10^{18}~\mathrm{coulomb}$
- ${\rm C.}\,9.65\,{\rm x}\,10^4~{\rm coulomb}$
- D. $6.023 \ \mathrm{x} \ 10^{28}$ coulomb

Answer: C

60. Which of the following solutions can be stored in copper vessel?

A. $AgNO_3$

B. $AuCl_3$

 $C. ZnCl_2$

D. all of these

Answer: C

61. out of Cu, Ag, Zn and Mg the metal which can displace all others from their aqueous salt solution is

A. Cu

 $\mathsf{B.}\,Zn$

 $\mathsf{C}.\,Ag$

 $\mathsf{D}.Mg$

Answer: D

Watch Video Solution

62. The number of faradays required to deposit 9gm Al from a solution of

 $AlCl_3$ will be

A. 1

B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

63. during electrolysis the reaction occurs at cathode is

A. reduction

B. oxidation

C. redox

D. hydrolysis

Answer: B

64. For a redox reaction to be spontaneous, the EMF should be

A. -ve

B.+ve

C. zero

D. any one of these

Answer: B

Watch Video Solution

65. The electrode potential of normal hydrogen electrode is

A. 0 volt

B.1 volt

C. 10volt

D. 0.1 volt

Answer: A

66. The standard reduction potentials at 25°C of $Li^+ |Li, Ba^{2+}| Ba$, $Na^+| Na$ and $Mg^{2+}| Mg$ are -3.05,-2.76,-2.61 and -2.37 V respectively.which is strongest reducing agent?

A. Li

 $\mathsf{B}.\,Ba$

 $\mathsf{C}.\,Na$

 $\mathsf{D}.\,Mg$

Answer: A

67. The standard reduction electrode potentials of the metals A,B and C are 0.68,-2.50 and -0.50V respectively. The order of their reducing power is:

A. A > B > CB. A > C > BC. C > B > AD. B > C > A

Answer: D

Watch Video Solution

68. The standard reduction potential for Fe^{2+} |Fe| and Sn^(2+) | Sn

 $e \leq ctrodesare - 0.44V$ and -0.14V respectively. F or the cell reaction.

 $Fe^{(2+)} + Sn$ to Fe + Sn(2+), the standard EMF is

A. 0.30V

B. 0.58V

C. 0.58V

D. -0.30V.

Answer: D

Watch Video Solution

69. 3 Faraday of electricity is passed through molten Al_2O_3 , aqueous solution of $CuSO_4$ and molten NaCl taken in three different electrolytic cells . The amount of Al, Cu and Na deposited at the cathodes will be in the ratio of :

A. 1mole :2mole:3mole

B. 3mole:2mole:1mole

C. 1mole :1.5mole:3mole

D. 1.5 mole :2 mole : 3 mole

Answer: C

70. An electrolytic cell contains a solution of $ZnSO_4$ and Platinum electrodes a current is passed until 1.6 gm of O_2 has been liberated at anode. The amount of Zn deposited at cathode would be

A. 1.6g

B. 6.5g

C. 13g

D. 3.2g

Answer: C

Watch Video Solution

71. unit of equivalent conductance is_____

72. molten sodium chloride conducts electricity due to the presence
of
Vatch Video Solution
73. reacts with dilute sulphuric acid
Watch Video Solution
74. non electrolytes are
Watch Video Solution
75. The process of splitting up of electrolytes into the $+ve$ and $-ve$ ions
are called
Watch Video Solution

76. For strong electtolytes degree of ionisation is
Watch Video Solution
77. for weak electrolytes degree of ionisation is
Watch Video Solution
78. Ostwald's dilution law is applicable for
Watch Video Solution
79. I coulonmb=x 1 second.
Watch Video Solution
80. electrical energy =× quantity of charge

Watch Video Solution
81. electrometallurgy is application of
Watch Video Solution
82. current efficiency=× 100%
Watch Video Solution
83. the reciprocal of specific resistance is known as
Watch Video Colution
Watch video Solution
84. Units of specific conductivity are
Watch Video Solution

85. molar conductivity =× Vm
Watch Video Solution
86. Structure of glucose ,urea and ethyl alcohol all are
Watch Video Solution
87. electro chemical cell is also known as
Vatch Video Solution
88. Relation between standard e.m.f. of a cell and equilibrium constant is
·
Watch Video Solution
Watch video solution

89. in an electrochemical cell reduction takes place at Watch Video Solution **90.** Charge on CO_3 ion is_____ A. -1 B. +2 C. -2 D. -3

Answer: 3.2×10^(-19) C

91. electrolytes are _____compounds

92. acids, bases and salts are examples of_____

A. strong electrolytes

B. weak electrolytes

C. non electrolytes

D. electrolytes

Answer: electrolytes

Watch Video Solution

93. Daniel cell is an example of____

94. Electroplated silver spoon acts as _____in a cell.

95. electrolytes having low electrical conductance are known as
Watch Video Solution
96. electrolytes having high electrical conductance are known as
Watch Video Solution
97. the potential of standard hydrogen electrode is
Watch Video Solution
98. 1 mole of electrons have charge
Watch Video Solution

99. dry cells like Leclanche cell, Mercury cells arecells
Watch Video Solution
100. hydrogen-oxygen cell is a cell
Watch Video Solution
101. ΔG is related to of the cell
Watch Video Solution
102. In electrochemical cell oxidation takes place at
Watch Video Solution
103. The best electronic conductor is

O Watch Video Solution
104. EMF of the cell when the cell reaction attains equilibrium is
Watch Video Solution
105. is the tendency of electrode to loose or gain
Watch Video Solution
106. galvanic cell is an
Watch Video Solution
107. Galvanic cell converts into
Watch Video Solution

108. determination of degree of dissociation of weak electrolyte is
application of law
Watch Video Solution
109. specific conductance = x
Watch Video Solution
110. unit of cell constant is
Watch Video Solution
111. Molar conductance for weak electrolyte on dilution
Watch Video Solution

112. Equivalent conductance for weak electrolyte on dilution
Watch Video Solution
113. charge on one mole of electron is
Watch Video Solution
114. Calculation of EMF of a cell and prediction of reactivity of metals are
114. Calculation of EMF of a cell and prediction of reactivity of metals are applications of
114. Calculation of EMF of a cell and prediction of reactivity of metals are applications of
114. Calculation of EMF of a cell and prediction of reactivity of metals are applications of Watch Video Solution
114. Calculation of EMF of a cell and prediction of reactivity of metals are applications of Watch Video Solution
114. Calculation of EMF of a cell and prediction of reactivity of metals are applications of Watch Video Solution 115. acetic acid is electrolyte
 114. Calculation of EMF of a cell and prediction of reactivity of metals are applications of Watch Video Solution 115. acetic acid is electrolyte Watch Video Solution

116. 1 coulomb is about electrons
Watch Video Solution
117. Copper sulphate solution stored in an iron vessel.
Watch Video Solution
118. I mole of electronscoulomb.
Watch Video Solution
119. Reduction takes place at during electrolysis.
Watch Video Solution
120. Oxidation takes place at druing electrolyses.

125. The conducting power of all the ions produced by 1 gm Molar law of
electrolyte in solution is called
Watch Video Solution
126. equivalent conductance = × volume of the solution
Watch Video Solution
127. unit of specific conductance is
Vatch Video Solution
128. Fill in the blanks: atomic weight=×equivalent weight
Vatch Video Solution

133. unit of electrochemical equivalent is
Watch Video Solution
134. 96500 Coulomb will deposite of metal.
Watch Video Solution
135. Equivalent conductance with dilution.
Watch Video Solution
136. Fill in the blanks: specific conductancewith dilution
Watch Video Solution
137. Fill in the blanks: unit of molar conductance is

Watch Video Solution
138. Fill in the blanks: chemical equivalent=96500×
O Watch Video Solution
120 charge corried by one male of electron is
139. charge carried by one mole of electron is
Vatch Video Solution
140 1 Faraday = x 1 coulomb
Vatch Video Solution
141. Fill in the blanks: units of conductance
Watch Video Solution

142. Statement true or false: Specific conductance increases with dilution.

Watch Video Solution
143. Statement True or False: A cell reaction is feasible if E ^o is zero
Watch Video Solution
144. Conductance of a I cm^3 solution is its equivalent conductance. True / False
Watch Video Solution

145. for Daniel cell, E° = +1.5V. True / False

146. Statement true or false: Unit of electrochemical equivalent is

kg/faraday

Watch Video Solution

147. Equivalent conductance for strong electrolyte on dilution decreases

rapidly. Is it true or false?

Watch Video Solution

148. Statement true or false: in an electrochemical cell reduction takes

place at anode

149. Molar conductance for weak electrolyte on dilution decreases slowly.

Is it true or false?

150. Correct the statement: molten sodium chloride conducts electricity

due to the presence of electrons

Watch Video Solution

151. write unit of equivalent conductance.

Watch Video Solution

152. write unit of specific conductance.

153. What is unit of molar conductivity or molar conductance ?

167. what will be formed at cathode when aqueous solution of $NaCl$ is
electrolysed?
Watch Video Solution
168. what is the electrolyte used in lead storage battery?
Watch Video Solution
169. What is the value of one faraday ?
Watch Video Solution
1/U. what is the voltage of standard state reduction of h^+ at 25° C?

171. Name the chemical substances used for silver plating.

Watch Video Solution
 172. For the copper electrode the standard oxidation potential is -0.34V.
 then find its reduction potential.
 Watch Video Solution

173. What is the charge carried by 1 mole nitride ion?

Watch Video Solution

174. What is the ECE of Ag?

178. give one example of primary cell
179. Suggest a metal that can be used for cathodic protection of iron

against rusting.

183. Write the Nernst equation for a half cell reaction.

187. Write the Nernst equation for single electrode potential.

197. State the factors that influence the value of cell potential of the following cell: $Mg(s)|Mg^+2(aq)||Ag^+(aq)|Ag(s)|$

Watch Video Solution

198. Predict the products of electrolysis in an aqueous solution of AgNO3

with silver electrodes.

Watch Video Solution

199. How much electricity is required for the oxidation of coulomb 1 mole

of H_2O to O_2

200. On electrolysis of dilute sulphuric acid using platinum electrodes, the product obtained at the anode will be:

204. Calculate the quantity of electricity required to deposit 0.108gm. of

silver from $AgNO_3$ soln.

(At. Mass of Ag=108).

205. The specific conductance of a solution is 0.356 $ohm^{-1} cm^{-1}$. The conductance of this solution in a cell was 0.0268 ohm^{-1} . Calculate the cell constant.

Watch Video Solution

206. If a current strength of 1 amp. is passed for 10 minutes in AgNO3

solution 4 gm Ag metal is deposited find the ECE of Ag.

207. Explain standard hydrogen electrode (SHE).

Watch Video Solution 208. Define Kohlrausch's law: Write its one application. Watch Video Solution 209. Express the relation among the conductivity of a solution in the cell, the cell constant and resistance of solution in the cell. Watch Video Solution

210. Fill in the blanks : On decreasing the concentration of a solution the

molar conductivity Of a weak electrolyte.

212. why is it not possible to determine the potential of a single electrode?

Watch Video Solution

Watch Video Solution

213. write the overall cell reaction for lead storage battery.

Watch Video Solution

214. How is the cell potential related to the free energy change? state meaning of each term used.

215. why does the conductivity of a solution decrease with dilution?

Watch Video Solution

216. The molar conductance at infinite dilution for sodium acetate ,hydrochloric acid and sodium chloride are 91.0,425.9 and 126.4 Scm^2mol^{-1} respectively at 298 k calculate the molar conductance of acetic acid at infinite dilution.

Watch Video Solution

217. The conductivity of 0.20 M solution of KCl at 298 K is 0.248S cm^{-1} . Calculate its molar conductivity.

218. Under what condition,

 $E_{
m cell}=0$ or $\Delta G=0$?

219. A galvanic cell has electrical potential of 1.1 V. If an opposing potential of 1.1 V is applied to this cell what will happen to the cell reaction and current flowing through the cell?

Watch Video Solution

220. Blocks of magnesium metal are often strapped to the steel hulls of

ocean going ships in order to :

Watch Video Solution

221. what are electrolytes?

222. State and explain Faraday's 1st law of electrolysis.

Watch Video Solution					
223. Explain Faraday's second law of electrolysis.					
Watch Video Solution					
224. Define electrochemical equivalent.					
Watch Video Solution					
225. Define degree of dissociation.					
Watch Video Solution					

226. What is anodic protection ?

231. What is the function of a salt bridge?

235. How electrode potential increases of an electrode ?

240. Define Galvanic-cell or Voltaic-cell.

241. 20 ampere current is flowing through $CuSO_4$ solution for 60 minutes. Find the amonut of cupper deposited. (At .wt. of Cu = 63.5)

Watch Video Solution

242. Calculate the value of Molar conductivity of $MgCl_2$ at infinite dilution if

 $\lambda_{Mg^2+} = 107.12 ohm^{-1} cm^2 mol^{-1} ~~{
m and}~~\lambda_{Cl^{-1}} = 76.34 ohm^{-1} cm^2 mol^{-1}$

243. Calculate the normality of KCI solution having resistance 2000 ohm. The cell constant is $5.53cm^{-1}$ and the equivalent conductance is $138.25ohm^{-1}cm^2eq^{-1}$.

244. 0.2 amp current flowing for 15 minutes deposits copper of 0.1978gm.

Find the electro chemical equivalent of copper

Watch Video Solution

245. How much time is required to pass 18000 coulombs of electricity

through an electrolyte if the current strenght is 10 amperes ?

246. I coulomb of charge contains how many number of electrons ?

250. How many coulombs of electricity are required for reduction of 1 mol

of Cu^{2+} to Cu ?

Watch Video Solution

251. How many coulombs of electricity are required for oxidation of 1 mol

of H_2O to O_2 ?

Watch Video Solution

252. How many moles of electrons are given by 45 coulombs ?

Watch Video Solution

253. How many moles of electrons are required to produce 10 gm of Al

from molten Al_2O_3 ?

254. Calculate the electrode potential given that $E^{\circ} (Zn^{2+} / Zn) = -0.76V$, when a zinc rod is dipped in 0.1 M solution of $ZnSO_4$. The salt is 95% dissociated at this solution at 298K.

255. Calculate the value of equilibrium constant for the reaction at 298 k.

$$Cu(s)+2Ag^+(aq)
ightarrow Cu^{2\,+}(aq)+2Ag(s)$$

 $E^{\,\circ}$ (Ag2+/Ag) = 0.80V

and $E^{\,\circ}(extsf{Cu2+/Cu})=0.34V$

Watch Video Solution

256. The ΔG° for the Danielle cell has been found to be - 212.3 kJ at 25°C.

Calculate the equilibrium constant for the cell reaction.

257. Define conductivity and molar conductivity for the solution of an electrolyte . Discuss their variation with concentration.

259. What are fuel cells ? Write the electrode reaction of a fuel cell which

uses the reaction of hydrogen with oxygen.

260. The specific conductance of a 0.12N solution of an electrolyte is $2.4 \times 10^{-2} \ ohm^{-1}cm^{-1}$ Calculate its equivalent conductance.

Watch Video Solution

261. what is corrosion? Describe the role of zinc in cathodic protection of iron can we use tin in place of zinc ?Explain.

Watch Video Solution

262. How many grams of silver could be plated out on a shield by electrolysis of a solution containing Ag^+ ions for a period of 4 hours at a current strength of 8.5 amperes? [Molar mass of Ag=107.8g]

263. How much copper is deposited on the cathode if a current of 5 A is passed through a solution of $CuSO_4$ for 45 minutes ?

Watch Video Solution

264. Explain why electrolysis of aqueous solution of NaCl gives H_2 at cathode and Cl_2 at anode.

Watch Video Solution

265. calculate the minimum P.D. to reduce Al_2O_3 500°C. [Given Δ G=+960

kj,1F=96,500C *mol*⁻¹]

Watch Video Solution

266. molar conductance of 1.5 M solution of an electrolyte is 138.9 Scm^2Mol^{-1} . Find the specific conductance.

267. write two differences between primary cells and secondary cells.

	0	Watch	Video	Solution
--	---	-------	-------	----------

268. Write the cell reaction which occur in lead storage battery:(1) when

the battery is in uses (2)and when the battery is on charging.

Watch Video Solution

269. Iron does not rust when coating is broken in a galvanised iron pipe

but rusting occurs if coating of tin over iron is broken. Explain.

Watch Video Solution

270. State two advantages of $H_2 - O_2$ fuel cell over ordinary cell.

271. Predict the products of electrolysis in each of the following ?

A dilute solution of H_2SO_4 with platinum electrodes.

272. State and explain Faraday's laws of electrolysis.

Watch Video Solution

Watch Video Solution

273. State and explain Faraday's laws of electrolysis. How many grams of

chlorine will be produced by the electrolysis of molten sodium chloride

with a current of 5.5 A for 25 min?

274. Define and explain electrochemical equivalent. How is it related with

chemical equivalent of the substance ?

275. Define electrochemical equivalent and chemical equivalent. How are they related with each other ? A current of 5 amperes is passed through an electrolyte for 15 minutes when 3 gms of the metal was deposited. Calculate the electrochemical equivalent of the metal.

Watch Video Solution

276. Define 'specific conductance' and 'equivalent conductance'. How are they related with each other? Discuss the effect of dilution on the conductance of an electrolyte.

277. A 0.1N solution of NaCl has a specific conductance of $0.00112ohm^{-1}cm^{-1}$. Calculate the equivalent conductance of the solution.

278. State and explain Kohlrausch's law of independeat migration of ions.

Watch Video Solution

279. State and explain Kohlrausch's law. How can this law be used to find

equivalent conductance of acetic acid at infinite dilution?

280. write a short note on : (a) kohlrausch's law

281. (b) Galvanic cell

283. Write notes on

- (i) Electroplating
- (ii) Electrorefining
- (iii) Galvanic cell
- (iv) Electrotyping
- (v) Electrochemical series.

284. How does molar conductivity vary with concentration for weak and

strong electrolyte ?

285. The resistance of a conductivity cell containing 0.001 M KCl solution at 298 K is 1500 Ω . What is the cell constant if the conductivity of 0.001 M KCl solution at 298 K is $0.146 \times 10^{-3} Scm^{-1}$?

Watch Video Solution

286. How does molar conductivity vary with concentration for weak and

strong electrolyte ?

287. Calculate the emf of the cell in which the following reaction takes

place,

 $Ni(s) + 2Ag^+(0.002M) \rightarrow Ni^{2+}(0.160M) + 2Ag(s)$

Given that $E_{
m cell}^{\,\circ}=1.05V$

Watch Video Solution

288. State and explain Kohlrausch's law. How can this law be used to find equivalent conductance of acetic acid at infinite dilution?

Watch Video Solution

289. Three electrolytic cells A,B and C containing solutions of zinc sulphate, silver nitrate and copper sulphate, respectively are connected in series.

A steady current of 1.5 A was passed through them until 1.45g of silver deposited at the cathode of cell B. How long did the current flow? What

mass of copper and zinc were deposited in the concerned cells? (Atomic

mass of Ag= 108, Zn = 65.4, Cu = 63.5)

Watch Video Solution

290. Resistance of a conductivity cell filled with 0.1 M KCl solution is 100 ohms. If the resistance of the same cell when filled with 0.02 M KCl solution is 520 ohms, calculate the conductivity and molar conductivity of 0.02 M KCl solution. (The conductivity of 0.1 M KCl solution is 1.29 Sm^{-1}).

291. The electrical resistance of a column of 0.05 M NaOH solution of diameter 1 cm and length 50 cm is 5.55 $\times 10^3 \Omega$. Calculate its resistivity, conductivity and molar conductivity.

292. State and exlain Kohlarausch.s law of independent migration of ions . The equivalent conductance of infinite dilution (A_0) for sodium acetate , sodium chloride and hydrochloric acid are 78, 109 and 384 $ohm^{-1}cm^2$ g. Calculate the A_0 of acetic acid .