©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

MATRICES

Problem

> 1. What $A=\left(\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right) B=\left(\begin{array}{cc}0 & -1 \\ -2 & 1\end{array}\right) ?$
2. Give an example of a unit matrix.

D Watch Video Solution

3. Express $A=((1,2),(2,3)$ as the sum of a symmetric and a skew symmetric matrix.

- Watch Video Solution

4.

$\left(\left(x_{1}, x_{2}\right),\left(\left(y_{1}, y_{2}\right)-\left(\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right),=\left(\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right)\right.\right.$
then find $x_{1}, x_{2}, y_{1}, y_{2}$,

D Watch Video Solution

5. Construct a 2×3 matrix having elements defined by $a_{i j}=i-j$.

D Watch Video Solution

6. Find x, y if $A=A^{\prime}$ where $A=\left(\begin{array}{ll}5 & x \\ y & 0\end{array}\right)$

- Watch Video Solution

7. If $A=((3,0,0),(0.3,0)(0,0,3)$ then find $\mathrm{A}^{\wedge} 2$.

D Watch Video Solution

8. Can a matrix be constructed by taking 29 elements?

- Watch Video Solution

9. Verify that $[A B]^{T}=B^{T} A^{T} \quad$ where
$A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3 \\ 3 & 4\end{array}\right]=\left[\begin{array}{lll}2 & 3 & 0 \\ 1 & 2 & 3\end{array}\right]$

- Watch Video Solution

10. There are two families A and B. There are 4 men, 6 women and 2 children in family A and 2 men, 2 women and 4 children in family B. The recommended daily amount of calories is 2400
for men, 1900 for women and 1800 for children, and 45 g of proteins for men, 55 g for women and 33 g for children. Represent the above information by matrices. Using matrices multiplication, calculate the total requirement of calories and proteins for each of the 2 families.

- Watch Video Solution

11. A trust fund has Rs. 50,000 that is to be invested in two types of bonds .The first and
second bonds respectively pay annual interest
at the rate of 5% and 6% respectively .Using matrix multiplication , determine how to invest the money in these bonds so as to get a total annual interest of Rs. 2780 .

D Watch Video Solution

12. Prove that a unit matrix is its own inverse.

Is the converse true ?

- Watch Video Solution

13. Express as a sum of a symmetric and skew
symmetric matrix. $\left[\begin{array}{ccc}2 & -1 & 3 \\ 5 & 7 & -2 \\ 1 & 4 & 6\end{array}\right]$

D Watch Video Solution

14. Express as a sum of a symmetric and skew
symmetric matrix. $\left[\begin{array}{ccc}x & a & b \\ a & y & c \\ b & c & z\end{array}\right]$

D Watch Video Solution
15. Show that $A=((2,-3)(3,4))$ satisfies equation $x^{2}-6 x+17=0$. Hence find A^{-1}.

- Watch Video Solution

16. Find the inverse of $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$ using elementary operations.

- Watch Video Solution

17. If $A=\left(\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right)$ then prove that
$A^{n}=((\cos n x, \sin n x),(-\sin n x, \cos n x)$
for all positive integers n.

D Watch Video Solution

18. If $A=\left[\begin{array}{cc}0 & -\tan \left(\frac{\alpha}{2}\right) \\ \tan \left(\frac{\alpha}{2}\right) & 0\end{array}\right]$ show that
$(I+A)=(I-A)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right] \quad$ where
$I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
\square
