©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

RELATION AND FUNCTIONS

Exercise

1. Write the smallest equivalence relation on A
$=\{1,2,3\}$.
2. Congruence modulo 3 relation partitions the set Z into how many equivalence classes ?

D Watch Video Solution

3. Given an example of a relation which is reflexive, symmetric but not transitive.
4. Given an example of a relation which is reflexive, transitive but not symmetric.

D Watch Video Solution

5. Given an example of a relation which is reflexive but neither symmetric nor transitive.

D Watch Video Solution
6. Find the least positive integer r such that
$-375 \in[r]_{11}$

- Watch Video Solution

7. Find three positive integers $x_{i}, i=I, 2,3$ satisfying $3 x=2(\bmod 7)$.

- Watch Video Solution

8. State the reason for the relation R in the set
$\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ not to be transitive.

- Watch Video Solution

9. Show that $f: R \rightarrow R$ defined as $f(x)=\operatorname{sgn}(x)$ is neither one-one nor onto.

- Watch Video Solution

10. Give an example of a function which is injective but not surjective.

D Watch Video Solution

11. Let $\mathrm{f}=\{(1,3),(2,4),(3,7)\}$ and $\mathrm{g}=\{(3,2),(4,3),(7,1)\}$

Determine gof and fog if possible. Test whether fog =gof.

D Watch Video Solution

12. Express each of the following function as
the sum of an even function and an odd
function: $1+X+X^{2}$.

D Watch Video Solution

13. Let $\mathrm{X}=\{1,2,3,4\}$ Determine whether $\mathrm{f}: X \rightarrow X$
defined as given below have inverses. Find
f^{-1} if it exist
$f=\{(1,2),(2,2),(3,2),(4,2)\}$
14. If the invertible function f is defined as $f(X)=\frac{3 x-4}{5}$, write $f^{-1}(X)$.

D Watch Video Solution

15. Let $f, R \rightarrow R$ and $g, R \rightarrow R$ defined as
$f(x)=|x|, g(x)=|5 x-2|$ then find $f o g$.

- Watch Video Solution

16. Let - is a binary operation defined by
$a \cdot b=3 a+4 b-2$, find $4 \cdot 5$.

D Watch Video Solution
17. Let the binary operation on Q defined as
$a \cdot b=2 a+b-a b$, find $3 \cdot 4$.

- Watch Video Solution

18. Let • is a binary operation on Z defined as
$a \cdot b=a+b-5$ find the identity element for

- on z.

D Watch Video Solution
19. Find the number of binary operations on
the set $\{a, b\}$.

D Watch Video Solution
20. Let • is a binary operation on $[0, ¥)$
defined as $a \cdot b=\sqrt{a^{2}+b^{2}}$ find the identity element.

D Watch Video Solution

21. List the members of the equivalence relation defined by $\{\{1\},\{2\},\{3,4\}\}$ partitins on $X=\{1,2,3,4\}$.Also find the equivalence classes of $1,2,3$ and 4 .
22. Find least non negative integer r such that

$$
7 \times 13 \times 23 \times 413 \equiv r(\bmod 11)
$$

(Watch Video Solution
23. Find least non negative integer r such that
$1237(\bmod 4)+985(\bmod 4) \equiv r(\bmod 4)$
(Watch Video Solution
24. For real numbers x and y, define $x R y$ if and
only if $x-y+\sqrt{2}$ is an irrational number. Is

R transitive? Explain your answer.

D Watch Video Solution

25. Let $A=\{a, b, c)$ and the relation R be defined on A as follows:
$R=\{\{a, a),(b, c),(a, b)\}$.

Then, write minimum number of ordered pairs
to be added in R to make R reflexive and transitive.

D Watch Video Solution

26. Let X and Y be sets containing m and n elements respectively.How many functions
from X to Y are one-one according as $m<n, m>n$ and $m=n ?$

D Watch Video Solution
27. Show that the relation R in the set of real numbers, defined as $R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive nor symmetric nor transitive.

- Watch Video Solution

28. Let $f(x)=\sqrt{x} \operatorname{and} g(x)=1-x^{2}$.

Compute fog and gof and find their natural domains.

- Watch Video Solution

29. Show that the operation * given by $x^{*} y=x+y+-x y$ is a binary oeration on Z, Q and R but not on N .

D Watch Video Solution

30. Let * is a binary operation on the set of all non-zero real numbers, given by $a * b=\frac{a b}{5}$ for all $c, b \in R-(0)$. Find the value of x , given that $2 *(x * 5)=10$.

- Watch Video Solution

31. Test whether the relations are reflexive, symmetric or transitive on the sets specified.
$\mathrm{R}=\left\{(\mathrm{m}, \mathrm{n}): \frac{m}{n}\right.$ is a power of 5$\}$ on $\mathrm{Z}-\{0\}$.

D Watch Video Solution

32. Suppose a box contains a set of n balls
($n>4$)(denoted by B) of four different colours (many have different sizes), viz,red, blue, green and yellow. Show that a relation R defined on B as $R=\left\{\left(b_{1}, b_{2}\right)\right.$: balls b_{1} and b_{2}
have the same colour\} is an equivalence relation on B. How many equivalence classes can you find with respect ot R ?

D Watch Video Solution

33. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two bijective functions, then prove that $(g \circ f)^{-1}$ $=f^{\wedge}(-1) \operatorname{og}(-1)^{\prime}$.
34. Prove that $f: X \rightarrow \mathrm{Y}$ is surjective iff for all $B \subseteq Y, f\left(f^{-1}(B)\right)=B$.

D Watch Video Solution

35. Prove that $\mathrm{f}: X \rightarrow Y$ is surjective iff for all
$A \subseteq X,(f(A))^{\prime} \subseteq f\left(A^{\prime}\right)$, where A^{\prime} denotes
the complement of A in X.

D Watch Video Solution
36. Let A and B be sets.

Show that $\mathrm{f}: A \times B \rightarrow B \times A$ such that f $(a, b)=(b, a)$ is bijective function.

D Watch Video Solution

37. Examine $f:(-1,1) \rightarrow R, f(x)=\frac{x}{1-x^{2}}$
functions if it is (i) injective (ii) surjective, (iii) bijective and (iv) none of the three.
38. Consider $\mathrm{f}: R_{+}[4, \infty]$ is given by $\mathrm{f}(\mathrm{x})=$ $x^{2}+4$. Show that f is invertible with the inverses f^{-1} of f given by $f^{-1}(y)=\sqrt{y-4}$, where R_{+}, is the set of all non-negative real numbers.

D Watch Video Solution

39. Test whether the relations are reflexive,
symmetric or transitive on the sets specified.
$R=\{(m, n): m-n \geq 7)$ on Z.
40. Find the number of equivalence, relations on $X=\{1,2,3)$,

- Watch Video Solution

41. Let $A=\{1,2,3)$. Then, show that the number of relations containing $(1,2)$ and $(2,3)$ which are reflexive and transitive but not symmetric is three.
42. Let R be a relation on the set A of ordered pairs of positive integers defined by (x, y) $R(u$,
v), if and only if $x v=y u$. Show that R is an equivalence relation.

- Watch Video Solution

43. Show that $f: N \rightarrow N$, given by
$f(x)=\left\{\begin{array}{l}x+1, \text { if } \mathrm{x} \text { is odd } \\ x-1, \text { if } \mathrm{x} \text { is even }\end{array}\right.$
is bijective (both one-one and onto).
44. Prove that $f: X \rightarrow Y$ is injective iff for all subsets A, B of $X, f(A \cap B)=f(A) \cap f(B)$.

D Watch Video Solution

45. Congruence modulo 3 relation partitions
the set Z into how many equivalence classes ?

- Watch Video Solution

46. Let R be the relation on the set R of real numbers such that $a R b$ iff $a-b$ is and integer.

Test whether R is an equivalence relation. If so
find the equivalence class of $\operatorname{land} \frac{1}{2}$ wrt. This equivalence relation.

D Watch Video Solution

47. Constract the composition
table/multiplication table for the binary
operation * defined on $\{0,1,2,3,4\}$ by
$a * b=a \times b(\bmod =5)$. Find the identity
element if any. Also find the inverse elements
of 2 and 4.

D Watch Video Solution

