

MATHS

BOOKS - MODERN PUBLICATION

RELATION AND FUNCTIONS

1. Write the smallest equivalence relation on A

= {1,2,3}.

2. Congruence modulo 3 relation partitions

the set Z into how many equivalence classes ?

3. Given an example of a relation which is

reflexive, symmetric but not transitive.

4. Given an example of a relation which is

reflexive, transitive but not symmetric.

Watch Video Solution

5. Given an example of a relation which is

reflexive but neither symmetric nor transitive.

6. Find the least positive integer r such that

Watch Video Solution

7. Find three positive integers x_i ,i = I, 2, 3 satisfying $3x = 2 \pmod{7}$.

8. State the reason for the relation R in the set $\{1, 2, 3\}$ given by R = $\{(1, 2), (2, 1)\}$ not to be transitive.

9. Show that $f \colon R o R$ defined as f(x) = sgn(x) is neither one-one nor onto.

10. Give an example of a function which is

injective but not surjective.

Watch Video Solution

11. Let $f = \{(1,3), (2,4), (3,7)\}$ and $g = \{(3,2), (4,3), (7,1)\}$ Determine gof and fog if possible . Test whether fog = gof.

12. Express each of the following function as the sum of an even function and an odd function: $1 + X + X^2$.

13. Let X ={1,2,3,4}Determine whether f: $X \to X$ defined as given below have inverses. Find f^{-1} if it exist $f = \{(1,2), (2,2), (3,2), (4,2)\}$

14. If the invertible function f is defined as $f(X) = \frac{3x - 4}{5}$, write $f^{-1}(X)$.
Watch Video Solution

15. Let f, R o R and g, R o R defined as f(x) = |x|, g(x) = |5x - 2| then find fog.

16. Let \cdot is a binary operation defined by

 $a \cdot b = 3a + 4b - 2$, find $4 \cdot 5$.

Watch Video Solution

17. Let the binary operation on Q defined as

 $a \cdot b = 2a + b - ab$, find $3 \cdot 4$.

18. Let \cdot is a binary operation on Z defined as

 $a \cdot b = a + b - 5$ find the identity element for

 \cdot on z.

19. Find the number of binary operations on the set {a, b}.

20. Let \cdot is a binary operation on [0, ¥) defined as $a \cdot b = \sqrt{a^2 + b^2}$ find the identity element.

21. List the members of the equivalence relation defined by $\{\{1\}, \{2\}, \{3, 4\}\}$ partitins on X={1,2,3,4}.Also find the equivalence classes of 1,2,3 and 4.

22. Find least non negative integer r such that

 $7 imes 13 imes 23 imes 413\equiv r({
m mod}\ 11)$

Watch Video Solution

23. Find least non negative integer r such that

 $1237(\operatorname{mod} 4) + 985(\operatorname{mod} 4) \equiv r(\operatorname{mod} 4)$

24. For real numbers x and y, define x R y if and only if $x - y + \sqrt{2}$ is an irrational number. Is R transitive? Explain your answer.

25. Let A = {a,b,c} and the relation R be defined

on A as follows:

R={{a,a), (b,c),(a,b)}.

Then, write minimum number of ordered pairs

to be added in R to make R reflexive and transitive.

26. Let X and Y be sets containing m and n elements respectively. How many functions from X to Y are one-one according as m < n, m > n and m = n?

27. Show that the relation R in the set of real numbers, defined as $R = \{(a, b) : a \le b^2\}$ is neither reflexive nor symmetric nor transitive.

Watch Video Solution

28. Let $f(x) = \sqrt{x}$ and $g(x) = 1 - x^2$.

Compute fog and gof and find their natural domains.

29. Show that the operation * given by x*y=x+y+ -xy is a binary oeration on Z,Q and R but not on N.

Watch Video Solution

30. Let * is a binary operation on the set of all non-zero real numbers, given by $a * b = \frac{ab}{5}$ for all $c, b \in R - (0)$. Find the value of x, given that 2 * (x * 5) = 10.

31. Test whether the relations are reflexive, symmetric or transitive on the sets specified. $R=\{(m,n): \frac{m}{n} \text{ is a power of 5} \text{ on } Z - \{0\}.$

32. Suppose a box contains a set of n balls (n > 4)(denoted by B)of four different colours (many have different sizes), viz,red, blue, green and yellow. Show that a relation R defined on B as $R = \{(b_1, b_2) : \text{balls}b_1 \text{and}b_2$

have the same colour} is an equivalence relation on B. How many equivalence classes can you find with respect ot R? Watch Video Solution **33.** If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two bijective functions, then prove that $(gof)^{-1}$

=f^(-1)og(-1)`.

34. Prove that $f \colon X \to \mathsf{Y}$ is surjective iff for all

$$B\subseteq Y, fig(f^{-1}(B)ig)=B.$$

Watch Video Solution

35. Prove that f:X o Y is surjective iff for all $A \subseteq X, (f(A))' \subseteq f(A')$, where A' denotes the complement of A in X.

36. Let A and B be sets.

Show that $\mathsf{f}:\,A imes B o B imes A$ such that f

(a,b) = (b,a) is bijective function .

Watch Video Solution

37. Examine
$$f \colon (-1,1) o R, f(x) = rac{x}{1-x^2}$$

functions if it is (i) injective (ii) surjective, (iii)

bijective and (iv) none of the three.

38. Consider f: R_+ [4, ∞] is given by f(x)= $x^2 + 4$. Show that f is invertible with the inverses f^{-1} of f given by $f^{-1}(y) = \sqrt{y-4}$, where R_+ , is the set of all non-negative real numbers.

Watch Video Solution

39. Test whether the relations are reflexive, symmetric or transitive on the sets specified.

R={(m,n):m-n \geq 7) on Z.

40. Find the number of equivalence, relations on X ={1,2,3),

41. Let A = {1, 2, 3). Then, show that the number

of relations containing (1, 2) and (2, 3) which are reflexive and transitive but not symmetric is three. **42.** Let R be a relation on the set A of ordered pairs of positive integers defined by (x, y) R (u, v), if and only if xv = yu. Show that R is an equivalence relation.

Watch Video Solution

43. Show that $f \colon N o N$, given by

 $f(x) = egin{cases} x+1, ext{if x is odd} \ x-1, ext{if x is even} \end{cases}$

is bijective (both one-one and onto).

44. Prove that $f \colon X \to Y$ is injective iff for all subsets A, B of $X, f(A \cap B) = f(A) \cap f(B).$

Watch Video Solution

45. Congruence modulo 3 relation partitions

the set Z into how many equivalence classes ?

46. Let R be the relation on the set R of real numbers such that aRb iff a-b is and integer. Test whether R is an equivalence relation. If so find the equivalence class of $1 \text{ and } \frac{1}{2}$ wrt. This equivalence relation.

47. Constract the composition table/multiplication table for the binary operation * defined on {0,1,2,3,4}by

 $a * b = a imes b (ext{mod} = 5)$. Find the identity

element if any. Also find the inverse elements of 2 and 4.