

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

SAMPLE PAPER 2015

Exercise

1. Write the value of

$$\lim_{h o 0} \, rac{ an^{-1}(1+h) - an^{-1}\,1}{h}$$

2. Write the set of values of x for which the function $f(x) = \sin x - x$ is increasing.

Watch Video Solution

3. If $\int_2^3 f(z) dx = 9$, then write the value of $\int_2^3 f(\phi(z)) d(\phi(z)).$

4. Write the order of the differential equation of the system of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Watch Video Solution

5. A line makes angles 60° and 45° with the positive direction of X-axis and Y-axis, respectively. What acute angle does it make with the Z-axis?

6. Write the equation of the plane perpendicular to y-axis at the point (0,-2, 0).

Watch Video Solution

7. If (2,3,5) is one end of a diameter of the sphere $x^2+y^2+z^2-6x-12y-2z+20=0$, then write coordinates of the other end of the diameter.

8. If
$$\begin{bmatrix} 3 & 5 & 3 \\ 2 & 4 & 2 \\ \lambda & 7 & 8 \end{bmatrix}$$

8. If $\begin{vmatrix} 3 & 3 & 3 \\ 2 & 4 & 2 \\ \lambda & 7 & 8 \end{vmatrix}$ is a singular matrix, write the

value of lambda.

Watch Video Solution

9. There are 4 letters and 4 directed envelopes. Write the number of ways such that two letters are kept in the right envelopes.

10. Write the probability that two persons have the same birthday (considering the relevant year not to be a leap year).

Watch Video Solution

11. Find $\frac{dy}{dx}$, when $y^x = x^{\sin y}$

Watch Video Solution

12. Find $\frac{dy}{dx}$, when $y=e^x \ln x$.

13. Show that
$$\dfrac{dy}{dx}$$
 is independent of t . $\cos x = \sqrt{\dfrac{1}{1+t^2}}$ and $\sin y = \dfrac{2t}{1+t^2}$

14. Verify Euler's theorem in the case of

$$z = xy + \frac{(x+y)^4}{xy}.$$

15. Show that '2 $\sin x + \tan x$ ge 3x all x in (0, pi/20).

Watch Video Solution

16. Find the following limits:

$$\lim_{x o 0\,+}\; \log_{ an x} an 2x$$

Vatch Video Solution

17. Find the approximate value of $\sqrt[6]{63}$.

18. Evaluate :
$$\int \!\! x^2 \tan^{-1} x dx$$
.

Watch Video Solution

19. Evaluate
$$\int \frac{dx}{x \ln(x) \sqrt{\left(In(x)\right)^2 - 4}}$$

20. Find the area of the circle

$$x^2 + y^2 = 2ax.$$

Watch Video Solution

21. Find the particular solution ofthe differential equation $\frac{d^2y}{dx^2}=6x$ given that y=1 and $rac{dx}{du}=2$ when x=0.

22. Solve the following differential equation

$$\left(x+2y^3
ight)rac{dy}{dx}=y.$$

Watch Video Solution

23. Solve the following differential equation:

$$x^2(y-1)dx + y^2(x-1)dy = 0.$$

24. Prove that the lines joining the midpoints of consecutive sides of a quadrilateral form a parallelogram using vector method.

Watch Video Solution

25. Prove that

$$\left[\left(\overrightarrow{a} imes\overrightarrow{b}
ight)\left(\overrightarrow{b} imes\overrightarrow{c}
ight)\left(\overrightarrow{c} imes\overrightarrow{a}
ight)
ight]=\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}
ight]^2$$

26. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitude show that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} .

Watch Video Solution

27. Prove that the measure of the angle between two main diagonals of a cube is $\cos^{-1}\frac{1}{3}$.

28. Find the equation of the plane through the points (1, 2, -3), (2,3, -4) and perpendicular to the plane x + y + z + 1 = 0.

Watch Video Solution

29. Find the perpendicular distance of the point

$$(-1,3,9)$$
 from the line

$$\frac{x-13}{5} = \frac{y+8}{-8} = \frac{z-31}{1}$$

30. Solve the following LPP graphically:

Minimize $Z=6x_1+7x_2$

Subjected to $x_1+2x_2\geq 1, x_1, x_2\geq 0.$

Watch Video Solution

31. Find the feasible region the the following system of equations

 $2y - x \ge 0, 6y - 3x \le 21, x \ge 0, y \ge 0.$

32. Solve the following equations by cramer's

rule:
$$7x + y + 1 = 0$$
, $x + 13y + 5 = 0$.

33. If
$$A=egin{bmatrix}3&-4\\1&-1\end{bmatrix}$$
 then show that $A^k=egin{bmatrix}1+2k&-4k\\k&1-2k\end{bmatrix}, karepsilon N$

$$A^k = egin{bmatrix} 1 + 2k & -4k \ k & 1 - 2k \end{bmatrix}, k arepsilon N$$

34. If
$$A=\begin{bmatrix}1&-2&2\\3&1&-1\end{bmatrix}$$
 $B\begin{bmatrix}2&4\\1&2\\3&-1\end{bmatrix}$ verify $that(AB)^T=B^TA^T.$

Watch Video Solution

35. How many four digits even numbers with distict digits can be formed out of the digits 0,1,2,3,4,5,6?

36. In how many ways can 10 boys and 10 girls sit in a row so that no two boys sit together?

Watch Video Solution

37. Find the fifth term in the expansion of $\left(6x-\frac{a^3}{x}\right)^{10}$

38. Two different digits are selected at random from the digits 1 through 9

If the sum is even, what is the probability that 3 is one of the digits selected?

Watch Video Solution

39. Suppose that the probability that your alarm goes off in the morning is 0.9. If the alarm goes off, the probability is 0.8 that you attend your 8 a.m. class. If the alarm does not go to off, the probability that you make your 8

a.m.class is 0.5. Find the probability that you make your 8 a.m. class.

Watch Video Solution

40. Find the tangent to the curve $y = \cos(x+y), 0 \le x \le 2\pi$ which is parallel to the line x + 2y = 0

Watch Video Solution

42. If
$$\overrightarrow{a}=2\hat{i}+\hat{j}$$
, $\overrightarrow{b}=-\hat{i}+2\hat{k}$,

$$\overrightarrow{c}=2\hat{i}+\hat{k}$$
. find $\overrightarrow{a} imes\left(\overrightarrow{b} imes\overrightarrow{c}
ight)$ and also verify the formula

$$\overrightarrow{a} imes \left(\overrightarrow{b} imes \overrightarrow{c}
ight) = \left(\overrightarrow{a}.\overrightarrow{c}
ight)\overrightarrow{b} - \left(\overrightarrow{a}.\overrightarrow{b}
ight)\overrightarrow{c}$$

•

43. A sphere of constant radius k passes through the origin and meets the coordinate axes at P,Q,R. Prove that centroid of the triangle PQR lies on the sphere $9(x^2 + y^2 + z^2) = 4k^2.$

Watch Video Solution

44. Maximize
$$z=-10x+2y$$

Subject to

$$-x + y \ge -1, x + y \le 6, y \le 5, x, y \ge 0$$

45. Show that $C_1^2 + 2C_2^2 + 3C_3^2 + ... + {}^nC_n^2$ = $\frac{(2n-1!)}{\left\{(n-1)!\right\}^2}$

Watch Video Solution

46. From a box containing 32 bulbs out of which 8 are defective 4 bulbs are drawn at random successively one after anoter with replacement. Find the probability distribution of the number of defective bulds.

