© ${ }^{\prime}$ doubtnut

India's Number 1 Education App

MATHS

BOOKS - MODERN PUBLICATION

SAMPLE PAPER 2016

Exercise

1. Write that condition of Rolle's theorem which is violated by the function $f(x)=|x-1|$ in $[0,2]$.

-

Watch Video Solution

$$
\begin{aligned}
& \text { 2. Write } \\
& \int_{0}^{\frac{\pi}{2}} \frac{\text { the }}{\sin x} d x-\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sin x+\cos x} d x
\end{aligned}
$$

D Watch Video Solution

3. If p and q are the order and degree of the differential equation
$y\left(\frac{d y}{d x}\right)^{2}+x^{2} \frac{d^{2} y}{d x^{2}}+x y=\sin x$, then choose the correct statement out of (i) $p>q$, (ii) $p=q$, (iii)
$p<q$.
4. If $|\vec{a}|=3,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=0$, then write the value of $|\vec{a} \times \vec{b}|$.

(D) Watch Video Solution

5. Write the distance between parallel planes $2 x-y+3 z=4$ and $2 x-y+3 z=18$.
(D) Watch Video Solution
6. Write the equation of the sphere concentric with the
$x^{2}+y^{2}+z^{2}-4 x-2 x-2 y+2 z-30=0 \quad$ and passing through the origin.

D Watch Video Solution
7. If A is a 4×5 matrix and B is a matrix such that $A^{T} B$ and $B A^{T}$ both are defined, then write the order of B.

D Watch Video Solution
8. If ${ }^{n} C_{r}={ }^{n} P_{r}, r \neq 1$, then write the value of r.
9. A binomial distribution has mean 4 and variance 3 .

Write the number of trials.

- Watch Video Solution

10. Find $\frac{d y}{d t}$, when $y=\sin ^{-1}\left(2 \frac{\sqrt{t^{2}-1}}{t^{2}}\right)$

- Watch Video Solution

11. Find $d y / d x$ if
$x^{m} y^{n}=\left(\frac{x}{y}\right)^{m+n}$
12. If $x=a \sec \theta, y=b \tan \theta$, then prove that $\frac{d^{2} y}{d x^{2}}=-\frac{b^{4}}{a^{2} y^{3}}$

D Watch Video Solution
13. if $u=x^{3}-3 x y^{2}$, show that

- Watch Video Solution

14. Find the interval where the following function is increasing:
$y=\sin x+\cos x, x \varepsilon[0,2 \pi]$.

(Watch Video Solution

15. Find the following limits: $\lim _{x \rightarrow 0+} \frac{\ln \tan x}{\ln \sin 2 x}$

- Watch Video Solution

16. The radius of a spherical soap bubble is increasing
at the rate of $0.2 \mathrm{~cm} / \mathrm{sec}$. Find the rate of increase of its surface area, when the radius is $7 \mathrm{~cm} .(\pi=3.141$ approx)

- Watch Video Solution

17. If $f^{\prime}(x)=e^{x}+\frac{1}{1+x^{2}}$ and $f(0)=1$, then find $f(x)$.

- Watch Video Solution

18. Evaluate : $\int(\log x)^{2} d x$
(-) Watch Video Solution
19. Evaluate: $\int \frac{2 x+9}{(x+3)^{2}} d x$
20. $\int_{0}^{1} \frac{x^{5}\left(4-x^{2}\right)}{\sqrt{1-x^{2}}} d x$

- Watch Video Solution

21. Evaluate $\int \frac{\sin x \cos x}{\sin ^{2} x-2 \sin x+3} d x$

- Watch Video Solution

22. Solve $d y+e^{-y} \sin x d x=0$.
23. Solve: $\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=1$

D Watch Video Solution

24. Prove that
$|a+b| \leq|a|+|b|$
State when equality will hold,

D Watch Video Solution

25. Find the area of the triangle $A B C$ with vertices
$A(1,2,4), B(3,1,-2)$ and $C(4,3,1)$ by vector method.
26. For any three vectors veca,vecb,vecc show that $[(\vec{a}-\vec{b})(\vec{c}-\vec{a})(\vec{b}-\vec{c})]=0$

- Watch Video Solution

27. The projection of a line segment $\overline{O P}$, through origin 0 , on the co-ordinate axes are $6,2,3$. Find the length of the line segment OP and its direction cosines.
28. Find the equation of the plane passing through the point ($-1,3,2$) and perpendicular to the planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.

- Watch Video Solution

29. Prove that the lines $\frac{x+4}{3}=\frac{y+6}{5}=\frac{z-1}{-2}$ and $3 x-2 y+z+5=0=2 x+3 y+4 z-4$ are co-planar.

- Watch Video Solution

30. Solve the following LPP graphically

Maximize, $Z=20 x+30 y$

Subject to $3 x+5 y \leq 15$
$x, y \geq 0$.

- Watch Video Solution

31. Find the feasible region of the following system
$2 x+y \geq 6, x-y \leq 3, x \geq 0, y \geq 0$

- Watch Video Solution

32. Show that $(a+1)$ is a factor of
$\left|\begin{array}{ccc}(a+1) & 2 & 3 \\ 1 & a+1 & 3 \\ 3 & -6 & a+1\end{array}\right|$
33. Prove that the following.
$\left[\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right]=\left[\begin{array}{lll}y & b & q \\ x & a & p \\ z & c & r\end{array}\right]=\left[\begin{array}{lll}x & y & z \\ p & q & r \\ a & b & c\end{array}\right]$

- Watch Video Solution

34. If $A=\left[\begin{array}{cc}\alpha & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]$, show that for no values of $\alpha, A^{2}=B$.
35. How many 4 digit numbers each greater than 6000 can be formed with be digits $5,6,7$ and 8 ?

- Watch Video Solution

36. If $m={ }^{n} C_{2}$, prove that ${ }^{n} C_{2}=3(n+1) C_{4}$.

D Watch Video Solution

37. If the ratio of the 3 rd term from the beginning to
the 3rd term from the end in the expansion of $(1+\sqrt{2})^{n}$ is $\frac{1}{8}$, then find the value of n.
38. Let A and B be events with
$P(A)=\frac{1}{3}, P(A \cup B)=\frac{3}{4}, P(A \cap B)=\frac{1}{4}, \quad$ find $P\left(A \cup B^{C}\right)$.

- Watch Video Solution

39. If X follows a binomial distribution with parameter $n=6$ and p with $4 P(X=4)=P(X=2)$, find p.
40. If $x=\frac{1-\cos ^{2} \theta}{\cos \theta}, y=\frac{1-\cos ^{2 n} \theta}{\cos ^{n} \theta}$ then show
that $\left(\frac{d y}{d x}\right)^{2}=n^{2}\left(\frac{y^{2}+4}{x^{2}+4}\right)$

D Watch Video Solution

41. Shows that the triangle of greatest area that can be inscribed in a circle is equilateral.

- Watch Video Solution

42. Determine the area common to the parabola $y^{2}=x$ and the circle $x^{2}+y^{2}=2 x$.
43. Find the solution of the following differential equations:
$x d y-y d x=\sqrt{x^{2}+y^{2}} d x$

D Watch Video Solution

44.

Prove
that
$\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})$
$=0$ and hence prove that
$\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a}), \vec{c} \times(\vec{a} \times \vec{b})$
are coplanar.
45. A variable plane meets the coordinate axes at P, Q,
R points. If the plane passes through a fixed point (a, $\mathrm{b}, \mathrm{c})$, prove that the centre of the shpere passing the origin and P, Q, R will lie on the surface $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$

D Watch Video Solution

46. Solve the following LPP graphically Maximize
$z=5 x_{1}+3 x_{2}$
Subject
$3 x_{1}+5 x_{2} \leq 15,5 x_{1}+2 x_{2} \leq 10, x_{1}, x_{2} \geq 0$.

- Watch Video Solution

47. Solve the following system of equations by the matrix inversion method.
$x+y+z=4$
$2 x-y+3 z=1$
and $3 x+2 y-z=1$

D Watch Video Solution

48. Three persons hit a target with probabilities $\left(\frac{1}{2}\right),\left(\frac{1}{3}\right)$ and $\left(\frac{1}{4}\right)$ respectively. If each one shoots at the target once, (i) find the probaility that
exactly one of them hits the target, (ii) if only one of them hits the target what is the probability that it was the first person?
